ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • ASLO (Association for the Sciences of Limnology and Oceanography)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • American Association for the Advancement of Science
  • 2005-2009  (3)
  • 1950-1954
  • 2005  (3)
Collection
Years
  • 2005-2009  (3)
  • 1950-1954
Year
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 50 (6). pp. 1771-1786.
    Publication Date: 2014-01-30
    Description: We investigated the effect of seasonal environmental changes on the rate and distribution of anaerobic oxidation of methane (AOM) in Eckernforde Bay sediments (German Baltic Sea) and identified organisms that are likely to be involved in the process. Surface sediments were sampled during September and March. Field rates of AOM and sulfate reduction (SR) were measured with radiotracer methods. Additional parameters were determined that potentially influence AOM, i.e., temperature, salinity, methane, sulfate, and chlorophyll a. Methanogenesis as well as potential rates of AOM and aerobic oxidation of methane were measured in vitro. AOM changed seasonally within the upper 20 cm of the sediment, with rates being between 1 and 14 nmol cm(-3) d(-1). Its distribution is suggested to be controlled by oxygen and sulfate penetration, temperature, as well as methane supply, leading to a shallow AOM zone during the warm productive season and to a slightly deeper AOM zone during the cold winter season. Rising methane bubbles apparently fed AOM above the sulfate-methane transition. Methanosarcinales-related anaerobic methanotrophs (ANME-2), identified with fluorescence in situ hybridization, is suggested to mediate AOM in Eckerntorde Bay. These archaea are known also from other marine methane-rich locations. However, they were not directly associated with sulfate-reducing bacteria. AOM is possibly mediated solely by these archaea that show a mesophilic physiology according to the seasonal temperature changes in Eckernforde Bay.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-30
    Description: We studied the direct effects of CO2 Engel et al. in the seawater was modified by an aeration system. The triplicate mesocosm treatments represented low (190 parts per million by volume (ppmV) CO2 organisms in a mesocosm experiment. In nine outdoor enclosures (11 m3 present (410 ppmV CO2 and high (710 ppmV CO2 pCO2 and related changes in seawater carbonate chemistry on marine planktonic each), the partial pressure of CO2 (pCO2 conditions. After initial fertilization with nitrate and phosphate a bloom dominated by the coccolithophorid Emiliania huxleyi occurred simultaneously in all of the nine mesocosms; it was monitored over a 19-day period. The three CO2 treatments assimilated nitrate and phosphate similarly. The concentration of particulate constituents was highly variable among the replicate mesocosms, disguising direct CO2 within each treatment, however, indicated that the net specific growth rate of E. huxleyi, the rate of calcification per cell, and the elemental stoichiometry of uptake and production processes were sensitive to changes in pCO2 This broad influence of CO2 -related effects. Normalization of production rates . on the E. huxleyi bloom suggests that changes in CO2 physiology with likely effects on the marine biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 50 (2). pp. 598-606.
    Publication Date: 2019-09-23
    Description: At Hook Ridge hydrothermal vent, a new species of Sclerolinum (Monilifera, Siboglinidae) was found at a water depth of 1,045 m. On the basis of investigations of multicores and gravity cores, the species habitat is characterized. Sclerolinum does not occur in sediments that are most strongly influenced by hydrothermal fluids, probably because of high temperature (up to 49°C) and precipitation of siliceous crusts. About 800 individuals m-2 occur in sediments that are only weakly exposed to hydrothermal flow and have the following characteristics: 20°C (15 cm sediment depth) to 21.5°C (bottom water), 18-40 cm yr-1 advection rates, pH 5.5, 〈25 µmol L-1 methane, 〈170 µmol L-1 sulfide, and 〈0.0054 mol m-2 yr-1 sulfide flux. Comparison with geochemical data from other reducing sediments indicates that the two groups of Siboglinidae, Monilifera and Frenulata, occur in sediments with low sulfide concentration and flux. In contrast, sulfurbased chemosynthetic organisms that typically occur at hydrothermal vents and cold seeps (e.g., Vestimentifera, vesicomyid clams, and bacterial mats) occur in sediments with higher sulfide availability; threshold values are around 500 µmol L-1 sulfide and 0.1 mol m-2 yr-1 sulfide fluxes. We did not find typical hydrothermal vent species at Hook Ridge hydrothermal vent, which might be explained by the unfavorable physicochemical habitat: At sites inhabited by Sclerolinum, sulfide availability appears to be too low, whereas at sites with higher sulfide availability, the temperatures might be too high, siliceous crust precipitation could preclude their occurrence, or both.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...