ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data
  • Other Sources  (274)
  • Electronics and Electrical Engineering  (274)
  • 2005-2009  (274)
  • 1950-1954
  • 2009  (144)
  • 2005  (130)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-26
    Description: Microwave and millimeter wave imaging has shown tremendous utility in a wide variety of applications. These techniques are primarily based on measuring coherent electric field distribution on the target being imaged. Mechanically scanned systems are the simple and low cost solution in microwave imaging. However, these systems are typically bulky and slow. This dissertation presents a design for a 2D switched imaging array that utilizes modulated scattering techniques for spatial multiplexing of the signal. The system was designed to be compact, coherent, possessing high dynamic range, and capable of video frame rate imaging. Various aspects of the system design were optimized to achieve the design objectives. The 2D imaging system as designed and described in this dissertation utilized PIN diode loaded resonant elliptical slot antennas as array elements. The slot antennas allow for incorporating the switching into the antennas thus reducing the cost and size of the array. Furthermore, these slots are integrated in a simple low loss waveguide network. Moreover, the sensitivity and dynamic range of this system is improved by utilizing a custom designed heterodyne receiver and matched filter. This dissertation also presents an analysis on the properties of this system. The performance of the multiplexing scheme, the noise floor and the dynamic range of the receivers are investigated. Furthermore, sources of errors such as mutual coupling and array response dispersion are also investigated. Finally, utilizing this imaging system for various applications such as 2D electric field mapping, scatterer localization, and nondestructive imaging is demonstrated.
    Keywords: Electronics and Electrical Engineering
    Type: M09-0626
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.
    Keywords: Electronics and Electrical Engineering
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: We report on the design and performance of a broad-band, high-power 540-640-GHz fix-tuned balanced frequency tripler chip that utilizes four planar Schottky anodes. The suspended strip-line circuit is fabricated with a 12-micron-thick support frame and is mounted in a split waveguide block. The chip is supported by thick beam leads that are also used to provide precise RF grounding. At room temperature, the tripler delivers 0.9-1.8 mW across the band with an estimated efficiency of 4.5%-9%. When cooled to 120 K, the tripler provides 2.0-4.2 mW across the band with an estimated efficiency of 8%-12%.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE Transactions on Microwave Theory and Techniques (ISSN 0018-9480); Volume 53; No. 9; 2835-2843
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: A Periodic Newsletter of the JPL/OSMS Assurance Technology Program Office (ATPO), NASA EEE Parts Assurance Group (NEPAG), and Section 514, of the Jet Propulsion Laboratory.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-12
    Description: It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-12
    Description: The purpose of this project was to try to interpret the results of some tests that were performed earlier this year and to demonstrate a possible use of emergence in computing to solve IVHM problems. The test data used was collected with piezoelectric sensors to detect mechanical changes in structures. This project team was included of Dr. Doug Ramers and Dr. Abdul Jallob of the Summer Faculty Fellowship Program, Arnaldo Colon-Lopez - a student intern from the University of Puerto Rico of Turabo, and John Lassister and Bob Engberg of the Structural and Dynamics Test Group. The tests were performed by Bob Engberg to compare the performance two types of piezoelectric (piezo) sensors, Pb(Zr(sub 1-1)Ti(sub x))O3, which we will label PZT, and Pb(Zn(sub 1/3)Nb(sub 2/3))O3-PbTiO, which we will label SCP. The tests were conducted under varying temperature and pressure conditions. One set of tests was done by varying water pressure inside an aluminum liner covered with carbon-fiber composite layers (a cylindrical "bottle" with domed ends) and the other by varying temperatures down to cryogenic levels on some specially prepared composite panels. This report discusses the data from the pressure study. The study of the temperature results was not completed in time for this report. The particular sensing done with these piezo sensors is accomplished by the sensor generating an controlled vibration that is transmitted into the structure to which the sensor is attached, and the same sensor then responding to the induced vibration of the structure. There is a relationship between the mechanical impedance of the structure and the resulting electrical impedance produced in the in the piezo sensor. The impedance is also a function of the excitation frequency. Changes in the real part of impendance signature relative to an original reference signature indicate a change in the coupled structure that could be the results of damage or strain. The water pressure tests were conducted by pressurizing the bottle on a test stand, and running sweeps of excitations frequencies for each of the piezo sensors and recording the resulting impedance. The sweeps were limited to 401 points by the available analyzer, and it was decided to perform individual sweeps at five different excitation frequency ranges. The frequency ranges used for the PZTs were different in two of the five ranges from the ranges used for the SCP. The bottles were pressurized to empty (no water), 0psig, 77 psig, 155 psig, 227 psig in nearly uniform increments of about 77psi. One of each of the two types of piezo sensors was fastened on to the bottle surface at two locations: about midway between the ends on cylindrical portion of the bottle and at the very edge of one of the end domes. The data was collected in files by sensor type (2 cases), by location (2 cases), by frequency range (5 cases), and pressure (5cases) to produce 100 data sets of 401 impedances. After familiarization with the piezo sensing technology and obtaining the data, the team developed a set of questions to try to answer regarding the data and made assignments of responsibilities. The next section lists the questions, and the remainder of the report describes the data analysis work performed by Dr. Ramers. This includes a discussion of the data, the approach to answering the question using statistical techniques, the use of an emergent system to investigate the data where statistical techniques were not usable, conclusions regarding the data, and recommendations.
    Keywords: Electronics and Electrical Engineering
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXV-1 - XXXV-17; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than 15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10-13 W(square root)xHz.
    Keywords: Electronics and Electrical Engineering
    Type: Nano Letters; Volume 5; no. 7; 1469-1474
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: In this review paper we examine these issues very carefully and describe the novel receivers being designed to make heterodyne instruments more competitive. It will be shown that heterodyne instruments will still have significant roles to play in the near future.
    Keywords: Electronics and Electrical Engineering
    Type: The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference of Terahertz Electronics; Williamsburg, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: The Receiver Lab Telescope (RLT) is a groundbased terahertz telescope; it is currently the only instrument producing astronomical data between 1 and 2 THz. The capabilities of the RLT have been expanding since observations began in late 2002. Initial observations were limited to the 850 GHz and 1.03 THz windows due to the availability of solid state local oscillators. In the last year we have begun observations with new local oscillators for the 1.3 and 1.5 THz atmospheric windows.
    Keywords: Electronics and Electrical Engineering
    Type: 16th International Symposium on Space Terahertz Technology; Gothenburg; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...