ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (5)
  • Springer  (5)
  • Annual Reviews
  • Springer Science + Business Media
  • 2005-2009  (5)
  • 1980-1984
  • 1940-1944
  • 2009  (1)
  • 2005  (4)
  • 1
    Publication Date: 2021-03-01
    Description: On September 6, 2002, aML =5.6 earthquake, occurring some tens of kilometres offshore from the Northern Sicilian coast (Southern Tyrrhenian Sea), slightly damaged the city of Palermo and surroundings (degree 6 in the European Macroseismic Scale 1998). The macroseismic investigation of the shock and a detailed study of effects of the main earthquakes which affected Palermo in the past have been performed in order to evaluate the seismic response of the city. Moreover, the comparison of the recent event, which is instrumentally constrained, with historical earthquakes allows us to infer new insights on the seismogenic sources of the area, that seem located offshore in the Tyrrhenian sea. In the last 500 years, Palermo has never been completely destroyed but has suffered effects estimated between intensities 6 and 8 EMS-98 many times (1693, 1726, 1751, 1823, 1940, 1968, 2002). The damage scenarios of the analysed events have shown that damage distribution is strongly conditioned by soil response in the different parts of the city and by a high building vulnerability, mainly in the historical centre and in the south-eastern zone of the modern city. As a matter of fact, Palermo has always suffered greater effects than those reported for other nearby localities. The hazard assessment obtained using observed site intensities has shown that the probability of occurrence for intensity 8 (the strongest intensity observed in Palermo) exceeds 99% for 550 years, while the estimated mean return period is 152 ± 40 years. These results, in connection with building vulnerability due to the urban expansion before the introduction of seismic code, suggest that the city is exposed to a relatively high seismic risk.
    Description: Published
    Description: 525-543
    Description: partially_open
    Keywords: intensity ; damage ; earthquakes ; Italy ; macroseismics ; Palermo ; seismic hazard ; vulnerability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 513 bytes
    Format: 1263995 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: An anisotropic attenuation law, based on an anisotropic characterization of intensity distribution for seismogenic zones, is proposed. This approach, that distinguishes itself for its consistency to the observed data, initially reconfigured by filtering procedures, is particularly suitable for seismic hazard evaluation.
    Description: Published
    Description: 707-714
    Description: partially_open
    Keywords: Attenuation law ; virtual intensity distribution ; seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 326918 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.
    Description: Published
    Description: 747-760
    Description: partially_open
    Keywords: Attenuation directions ; southern Spain ; macroseismic intensity ; virtual intensity ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 477378 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The anisotropic modelling of intensity distribution, affected by the construction of macroseismic planes, allows an analysis of the influence of each point of observed intensity on the analytical determination of epicenter and of the principal attenuation directions. Such a procedure is a vital aid in the cases in which the observed intensity points, that, for location or joined intensity level, are not consistent with an anisotropic model of intensity attenuation. A suitable filtering on intensity levels associated with the points of the intensity map, for a better modelling of observed intensity distribution, is proposed with the aim of a better seismic hazard evaluation
    Description: Published
    Description: 683-697
    Description: partially_open
    Keywords: Macroseismicity ; observed intensity filtering ; macroseismic planes ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 767274 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: National seismic risk maps are an important risk mitigation tool as they can be used for the prioritization of regions within a country where retrofitting of the building stock or other risk mitigation measures should take place. The production of a seismic risk map involves the convolution of seismic hazard data, vulnerability predictions for the building stock and exposure data. The seismic risk maps produced in Italy over the past 10 years are compared in this paper with recent proposals for seismic risk maps based on state-of-the-art seismic hazard data and mechanics-based vulnerability assessment procedures. The aim of the paper is to open the discussion for the way in which future seismic risk maps could be produced, making use of the most up-to-date information in the fields of seismic hazard evaluation and vulnerability assessment.
    Description: Italian Ministry of Research and Higher Education (MIUR—Ministero dell’Università e della Ricerca) through the financing of the project AIRPLANE (Advancing Interdisciplinary Research PLAtform on volcanoes aNd Earthquakes)
    Description: In press
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic risk ; Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...