ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (35)
  • Elsevier  (35)
  • National Academy of Sciences
  • 2005-2009  (35)
  • 1990-1994
  • 2009  (11)
  • 2005  (24)
Collection
Years
  • 2005-2009  (35)
  • 1990-1994
Year
  • 1
    Publication Date: 2022-04-22
    Description: Ground deformations are observed in connection with volcanic activity, and therefore, geodetic monitoring can provide significant indication of changes of equilibrium conditions. The aim of this paper is to study the deformation of Mount Vesuvius (Italy) caused by overpressure sources at various depths, using a commercial (Ansys) 3D finite element code, in the framework of linear elastic isotropic material behavior. Both homogenous and heterogeneous media with carbonate basement were analyzed to understand the influence of topography on the ground deformations. The topography of the Somma-Vesuvius was taken into account, using a digital terrain model, and the carbonate basement was schematically modelled by assuming two horizontal layers with different Young moduli. The presence of a strong deviation from axially symmetric pattern of the displacement field, and of small subsidence areas, was found. These characteristics are completely unknown from the simple Mogi model and by simplified topography model, as verified by ad hoc simulations. These preliminary results, showing areas of the volcanic edifice experiencing high deformation, can improve the determination of the sources of deformations, i.e. the most relevant problem in the volcano monitoring. Moreover, the knowledge of the deformation pattern, including the topography effects, can provide significant indications to optimize the location of sensors and the characteristics needed to design an efficient and reliable geodetic monitoring network able to detect shallow intrusion events.
    Description: Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento della Protezione Civile
    Description: Published
    Description: 178-186
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformations ; Geodetic monitoring ; Topography ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
    Description: -European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 963–981
    Description: partially_open
    Keywords: isotopes ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1032453 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This work presents the results of hydrogeochemical studies carried out at Vesuvius during the period May 1998 - December 2001, mostly focusing on compositional time variations observed during this time. Based on their chemistry, groundwater samples are distinguished into two groups, 1 and 2, representative of water circulation in the southern and northern sectors of the volcano, respectively. Waters from group 1 are typically more acidic, warmer,and more saline than those of group 2. They also have higher CO2 and CH4 contents, attributed to enhanced input of deep-rising volatiles and prolonged water-rock interactions. Time-series highlight the fairly constant chemical composition of the entire aquifer. Groundwater temperature, pH, bicarbonate content and dissolved CO2 display quite stable values in the study period, particularly in deep wells (piezometric level more than 100 m deep). Shallower water bodies present more evident temporal variations, related to seasonal and anthropogenic effects. This paper also describes some important variations in water chemistry which had occurred by the time of the seismic event in early October 1999, particularly in the Olivella spring located on the northern flank of the volcano. At this site, a great decrease in water pH and redox potential, and increased dissolved CO2 contents and 3He/4He ratios were observed. These changes in chemical and isotope composition support the hypothesis of an input of magma-derived helium and carbon dioxide into the aquifer feeding the Olivella spring by the time of the earthquake.
    Description: Published
    Description: 81-104
    Description: partially_open
    Keywords: Vesuvius ; volcanic surveillance ; groundwater ; hydro-geochemistry ; oxygen-18 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1457387 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM=Hg0 (g)+HgII (g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermalmagmatic volatiles has been occurring since 1992 from the Southern summit crater.We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~3.2×10−6), measured close to the source vent, with the H2S plume flux (~0.7 t d−1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr−1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4×10−7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.
    Description: Published
    Description: 276-282
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mercury ; Fumaroles ; Volcanic plume ; Trace metals ; Gaseous and particulate mercury ; Emission rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The multi-parametric permanent system (tilt and GPS networks, robotized geodetic station) for monitoring ground deformation at Stromboli volcano was set up in the 1990s and later greatly improved during the effusive event of 2002–2003. Unlike other volcanoes, e.g. Mt. Etna, the magnitude of ground deformation signals of Stromboli is very small and through the entire period of operation of the monitoring system, only two major episodes of deformation, in 1994–1995 and 2000, which did not lead to an eruption but rather pure intrusion, were measured. Similarly to the 2002–2003 eruption, no important deformations were detected in the months before the 2007 eruption. However, unlike the 2002–2003 eruption, GPS and tilt stations recorded a continuous deflation during the entire 2007 eruption, which allowed us to infer a vertical elongated prolate ellipsoidal source, centered below the summit craters at depth of about 2.8 km b.s.l. Due to its geometry and position, this source simulates an elongated plumbing system connecting the deeper LP magma storage (depth from 5 to 10 km) with the HP shallower storage (0.8–3 km), both previously identified by petrologic and geochemical studies. This result represents the first contribution of geophysics to the definition of the plumbing system of Stromboli at intermediate depth. Finally, no deformation due to the plumbing system was measured for a long time after the end of the eruption. Meanwhile, the new terrestrial geodetic monitoring system installed within the Sciara del Fuoco, on the lava fan formed during the eruption, indicated that during the first months after the end of the eruption the ground velocity progressively decreased in time, suggesting that part of the deformation was due to the thermal contraction of the lava flow.
    Description: Published
    Description: 172-181
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground Deformation ; source modelling ; flank instability ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Focusing on the Island of Stromboli, this research investigates whether airborne remote sensing systems, such as those based on digital photogrammetry and laser scanner sensors, can be adopted to monitor slope deformation and lava emplacement processes in active volcanic areas. Thanks to the capability of extracting accurate topographic data and working on flexible time schedules, these methods can be used to constrain the regular and more frequent measurements derived from satellite observations. This work is dedicated to the monitoring of Stromboli's volcanic edifice which is beneficial when obtaining quantitative data on the geometry of deformation features and the displaced (failures and landslides) and emplaced (lava flows) volumes. In particular, we focus on the capability of extracting average effusion rates from volume measurements that can be used to validate or integrate satellite-derived estimates. Since 2001, a number of airborne remote sensing surveys, namely Digital Photogrammetry (DP) and Airborne Laser Scanning (ALS), have been carried out on Stromboli's volcano to obtain high resolution Digital Elevation Models (DEM) and orthophotos with sub-meter spatial resolution and a time schedule suitable for monitoring the morphological evolution of the surface during the quiescent phases. During the last two effusive eruptions (2002–2003 and 2007) the surface modifications, created on the Sciara del Fuoco slope and on the crater area as a consequence of effusive activity, were quantified and monitored using the same methodologies. This work, which is based on the results obtained from the multi-temporal quantitative analysis of the data collected from 2001 to 2007, mainly focuses on the 2007 eruption but also accounts for analogies and differences regarding the 2002–2003 event. The 2007 eruption on the Sciara del Fuoco slope from 27 February until 2 April, produced a compound lava field including a lava delta on the shoreline, discharging most of the lava into the sea. The comparison of the 2007 DEMs with a pre-eruption surface (2006 LIDAR survey) allowed for the evaluation of the total lava volume that accumulated on the subaerial slope while two syn-eruption DEMs were used to calculate the average effusion rates during the eruption. Since the evolution of a lava field produced during an eruption can be seen as a proxy for the magma intrusion mechanism, hypotheses are formulated on the connection between the lava discharge and the instabilities suffered by the slope.
    Description: Published
    Description: 201-213
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Slope deformation ; Effusive activity ; Aerial surveys ; Digital elevation model ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This paper deals with sulfur, chlorine and fluorine abundances in the eruptive volcanic plume of the huge October 2002– January 2003 eruption of Mount Etna, aiming at relating the relevant compositional variations observed throughout with changes in eruption dynamics and degassing mechanisms. The recurrent sampling of plume acidic volatiles by filter-pack methodology revealed that, during the study period, S/Cl and Cl/F ratios ranged from 0.1–6.8 and 0.9–5.6, respectively. Plume S/Cl ratios increased by a factor of f10 as volcanic activity drifted from paroxysmal lava fountaining (mid- and late November) to passive degassing and minor effusion (early January), and then decreased to the low values (S/Cl = 0.1) typical of the final stages of the eruption. Parallel variations in chlorine to fluorine ratios were also observed. A theoretical model is proposed for quantitative interpretation of these changes in plume composition. The model calculates the composition of a volatile phase exsolving from an ascending Etna magma, based on knowledge of solubilities and abundances in the undegassed melt of sulfur and halogens [T.M. Gerlach, EOS 72 (1991), 249, 254–255]. According to this model, degassing of Etnean basaltic melt at high pressures and depths (〉100 MPa, 3 km) is likely to release a CO2+H2O-rich vapor phase with S/Cl molar ratios f1. Extensive sulfur and chlorine degassing from the melt would take place at shallower depth ( P 〈 20 MPa, 0.6 km), with S/Cl ratios in the vapor phase increasing as pressure drops to 0.1 MPa. Comparisons between model compositions and volcanic plume data demonstrate that the chemical trends observed during the eruption may be explained by increased degassing due to depressurization of a basaltic magma batch ascending toward the surface.
    Description: Published
    Description: 469-483
    Description: partially_open
    Keywords: magmatic degassing ; volcanic plume ; basaltic eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 532 bytes
    Format: 728204 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: While the eruptive record of Mount Etna is reasonably complete for the past 400 years, the activity of the early and late 1960s, which took place at the summit, is poorly documented in the scientific literature. From 1955 to 1971, the Central and Northeast Craters were the sites of long-lived mild Strombolian and effusive activity, and numerous brief episodes of vigorous eruptive activity, which led to repeated overflows of lava onto the external flanks of the volcano. A reconstruction of the sequence of the more important of these events based on research in largely obscure and nearly inaccessible sources permits a better understanding of the eruption dynamics and rough estimates of erupted volumes and of the changes to the morphology of the summit area. During the first half of 1964, the activity culminated in a series of highly dynamic events at the Central Crater including the opening of a fissure on the E flank of the central summit cone, lava fountains, voluminous tephra emission, prolonged strong activity with continuous lava overflows, and growth of large pyroclastic intracrater cones. Among the most notable processes during this eruption was the breaching of a section of the crater wall, which was caused by lateral pressure of lava ponding within the crater. Comparison with the apparently similar summit activity of 1999 allows us to state that (a) lava overflows from large pit craters at the summit are often accompanied by breaching of the crater walls, which represents a significant hazard to nearby observers, and that (b) eruptive activity in 1999 was much more complex and voluminous than in 1964. For 1960s standards however, the 1964 activity was the most important summit eruption in terms of intensity and output rates for about 100 years, causing profound changes to the summit morphology and obliterating definitively the former Central Crater.
    Description: Published
    Description: 203-218
    Description: partially_open
    Keywords: Mount Etna ; Summit eruption ; Crater morphology and Lava overflows ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1832340 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The time-correlation properties in the hourly time variability of volcano-magnetic data measured at the active volcano Mt. Etna, Sicily (southern Italy), are investigated by using the detrended fluctuation analysis (DFA). DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of nonstationarities. The procedure adopted has revealed unambiguous link between the dynamics of the measured data and the recent eruptive episode of the volcano occurred on October 27, 2002.
    Description: Published
    Description: 1921-1929
    Description: partially_open
    Keywords: MT Etna ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 937282 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On July 18, 2001, two main eruptive vents opened on the southern flank of Mount Etna volcano (Italy) at ~2100 m and ~2550 m a.s.l., respectively. The former vent fed mild strombolian activity and lava flows, while the latter represented the main explosive vent, producing strong phreato-magmatic explosions. Explosions at this latter vent, however, shifted to a strombolian style in the following days, before switching back to phreato-magmatic activity towards the end of the eruption, which ended on August 9, 2001. On August 3, a small seismoacoustic array was deployed close to the eruptive vents. The array was composed of three stations, which recorded seismic and infrasonic waves coming from both of the eruptive vents. A further seismoacoustic station, equipped with a thermal-infrared sensor, was also installed several kilometers north of the first array. Seismic signals relating to the strombolian activity at the 2100-m vent were characterized by a strong decompression at the source. Analysis of the time delays between seismic, infrasonic and infrared event onsets also revealed that ejection velocities during explosions from both vents were subsonic. Time delays between the onset of explosive events apparent in the infrared and infrasound data indicated that the explosion source at the 2550-m vent was located 220–250 m below the crater rim. In comparison, the depth of the seismic source was estimated to be between 230 and 335 m below the rim. This converts to 120–150 and 130–235 m below the preexisting ground surface. In addition, time delays between seismic and infrasonic signals recorded for the lower (2100 m) vent also revealed a seismic source that was no more than a few tens of meters deeper than the fragmentation surface.
    Description: Published
    Description: 219-230
    Description: partially_open
    Keywords: Mt. Etna ; explosive eruptions ; arrays ; seismic ; infrasonic and thermal data ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 590708 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...