ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America (SSA)
  • Wiley-Blackwell
  • 2005-2009  (7)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • 2007  (5)
  • 2005  (2)
Collection
Years
  • 2005-2009  (7)
  • 1980-1984
  • 1965-1969
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Marine Ecology, 28 (1). pp. 152-159.
    Publication Date: 2020-07-14
    Description: Meiobenthos densities and higher taxon composition were studied in an active gas seepage area at depths from 182 to 252 m in the submarine Dnieper Canyon located in the northwestern part of the Black Sea. The meiobenthos was represented by Ciliata, Foraminifera, Nematoda, Polychaeta, Bivalvia, Gastropoda, Amphipoda, and Acarina. Also present in the sediment samples were juvenile stages of Copepoda and Cladocera which may be of planktonic origin. Nematoda and Foraminifera were the dominant groups. The abundance of the meiobenthos varied between 2397 and 52,593 ind.·m−2. Maximum densities of Nematoda and Foraminifera were recorded in the upper sediment layer of a permanent H2S zone at depths from 220 to 250 m. This dense concentration of meiobenthos was found in an area where intense methane seeps were covered by methane-oxidizing microbial mats. Results suggest that methane and its microbial oxidation products are the factors responsible for the presence of a highly sulfidic and biologically productive zone characterized by specially adapted benthic groups. At the same time, an inverse correlation was found between meiofauna densities and methane concentrations in the uppermost sediment layers. The hypothesis is that the concentration of Nematoda and Foraminifera within the areas enriched with methane is an ecological compromise between the food requirements of these organisms and their adaptations to the toxic H2S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Magnetic Resonance in Chemistry, 45 (12). pp. 1072-1075.
    Publication Date: 2020-07-15
    Description: Diosmetin, 5,7,3′-trihydroxy-4′-methoxyflavone shows chemopreventive, antimutagenic, and antiallergic effects. On the other hand, chrysoeriol, 5,7,4′-trihydroxy-3′-methoxyflavone induced nodABC-lacZ in Rhizobium meliloti. Both of them belong to hydroxymethoxy- flavones. One major difference between diosmetin and chrysoeriol is the substituted position of hydroxyl and methoxyl groups. In order to elucidate the relationships between their structures and activity, one of the first things to be done is the determination of their structures. However, most flavones occur widely in nature, and thus it is difficult to obtain in sufficient amounts from natural sources to identify their structures. Assignments of NMR data of several hydroxymethoxyflavones may help us to identify novel flavonoid compounds isolated from natural sources based on their NMR experiments. Therefore, we report here the complete assignments of 1H and 13C NMR data of 13 hydroxymethoxyflavones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-01
    Description: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a high spatial resolution analytical method which has been applied to the analysis of silicic tephras. With current instrumentation, around 30 trace elements can be determined from single glass shards as small as ∼ 40 µm, separated from tephra deposits. As a result of element fractionation during the ablation process using a 266 nm laser, a relatively complex calibration strategy is required. Nonetheless, such a strategy gives analyses which are accurate (typically within ±5%) and have an analytical precision which varies from ∼ ±2% at 100 ppm, to ∼ ±15% at 1 ppm. Detection limits for elements used in correlation and discrimination studies are well below 1 ppm. Examples of the application of trace element analysis by LA-ICP-MS in tephra studies are presented from the USA, New Zealand and the Mediterranean. Improvements in instrumental sensitivity in recent years have the potential to lower detection limits and improve analytical precision, thus allowing the analysis of smaller glass shards from more distal tephras. Laser systems operating at shorter wavelengths (e.g. 193 nm) are now more widely available, and produce a much more controllable ablation in glasses than 266 nm lasers. Crater sizes of 〈10 µm are easily achieved, and at 193 nm many of the elemental fractionation issues which mar longer wavelengths are overcome. By coupling a short wavelength laser to a modern ICP-MS it should be possible to determine the trace element composition of glass shards as small as 20 µm and, providing sample preparation issues can be overcome, the determination of the more abundant trace elements in glass shards as small as 10 µm is within instrumental capabilities. This will make it possible to chemically fingerprint tephra deposits which are far from their sources, and will greatly extend the range over which geochemical correlation of tephras can be undertaken.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-05
    Description: Natural communities are constantly changing due to a variety of interacting external processes and the temporal occurrence and intensity of these processes can have important implications for the diversity and structure of marine sessile assemblages. In this study, we investigated the effects of temporal variation in a disturbance regime, as well as the specific timing of events within different regimes, on the composition and diversity of marine subtidal fouling assemblages. We did this in a multi-factorial experiment using artificial settlement tiles deployed at two sites on the North East coast of England. We found that although there were significant effects of disturbances on the composition of assemblages, there were no effects of either the variation in the disturbance regime or the specific timing of events on the diversity or assemblage composition at either site. In contrast to recent implications we conclude that in marine fouling assemblages, the variability in disturbance regimes (as a driving force) is unimportant, while disturbance itself is an important force for structuring robust ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-14
    Description: An analysis of mass (M) and standard length (LS) data for larval, juvenile and adult sprat (Sprattus sprattus; Clupeidae) revealed marked changes in the allometric scaling factor (b in inline image). For sprat 〈44 mm LS, b was 5·0, whereas in larger juveniles and adults, b was c. 3·4 indicating a relatively protracted metamorphic period for this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-31
    Description: Human activities have differentially altered biogeochemical cycling at local, regional and global scales. We propose that a stoichiometric approach, examining the fluxes of multiple elements and the ratio between them, may be a useful tool for better understanding human effects on ecosystem processes and services. The different scale of impacts of the elements carbon, nitrogen and phosphorus and the different nature of their biogeochemical cycles, imply a large variation of their stoichiometric ratios in space and time and thus divergent impacts on biota. In this paper, we examine the effects of anthropogenic perturbations on nutrient ratios in ecosystems in two examples and one case study. Altered stoichiometry in agricultural systems (example 1) can affect not only crop yield and quality but also the interactions between plants and their pollinators, pests and pathogens. Human activities have also altered stoichiometry in coastal ecosystems (example 2). Increased N loading has especially lead to increased N:P and reduced Si:N ratios, with detrimental effects on ecosystem services derived from coastal pelagic food webs, such as fish yield and water quality. The terrestrial–aquatic linkage in stoichiometric alterations is illustrated with a case study, the Mississippi River watershed, where anthropogenic activities have caused stoichiometric changes that have propagated through the watershed into the northern Gulf of Mexico. Coupled with altered stoichiometric nutrient inputs are the inherent differences in variation and sensitivity of different ecosystems to anthropogenic disturbance. Furthermore, the connections among the components of a watershed may result in downstream cascades of disrupted functioning. Applying a multiple element perspective to understanding and addressing societal needs is a new direction for both ecological stoichiometry and sustainability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...