ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (16)
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate  (6)
  • American Geophysical Union  (16)
  • Springer  (6)
  • Public Library of Science
  • 2020-2022
  • 2015-2019
  • 2005-2009  (22)
  • 1950-1954
  • 1945-1949
  • 2007  (4)
  • 2005  (18)
Collection
Years
  • 2020-2022
  • 2015-2019
  • 2005-2009  (22)
  • 1950-1954
  • 1945-1949
Year
  • 1
    Publication Date: 2022-02-16
    Description: The role of mud volcanoes (MVs) as a source of methane(CH4) flux to the atmosphere and the ocean has been increasingly recognised in the last several years (Milkov 2000; Dimitrov 2002, 2003; Etiope and Klusman 2002; Kopf 2002, 2003; Milkov et al. 2003; Etiope and Milkov 2004). In one of the most recent papers, Kopf (2003) claims to report a reliable estimate of the global CH4 emission from MVs. However, the significance and usefulness of the estimate presented by Kopf (2003) are rather poor. The used dataset is smaller than in previous studies (although the author makes a reverse claim), and some previously published works are misquoted and misinterpreted. Numerous arithmetic mistakes made during simple calculations and data manipulations lead to confusing results and conclusions. In this comment, we highlight some of the most significant problems with the estimates published by Kopf (2003).
    Description: Published
    Description: 490-492
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; mud volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-07
    Description: The flow of ground water in a buried permeable paleochannel can be observed at the ground surface through its self-potential signature. We apply this method to delineate the Saint-Ferréol paleo-channel of the Rhone River located in Camargue, in the South East of France. Negative potentials, 30 mV (reference taken outside the paleochannel),are associated with ground water flow in this major sand-filled channel (500 m wide). Electrical resistivity is primarily controls by the salinity of the pore water. Electrical resistivity tomography and in situ sampling show the salinity of the water inside the paleo-channel is ten times smaller by comparison with the pore water of the surrounding sediments. Combining electrical resistivity surveys, self-potential data, and a minimum of drilling information, a 3-D reconstruction of the architecture of the paleo-channel is obtained showing the usefulness of this methodology for geomorphological reconstructions in this type of coastal environment.
    Description: - Observatoire de Recherche en Environnement (ORE)
    Description: Published
    Description: L07401
    Description: partially_open
    Keywords: Self-potential ; electrical resistivity tomography ; hydrogeology ; tomography ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 226125 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-23
    Description: Abstract: The simultaneous solution of the Planck equation (involving the widely used “dual-band” technique) using two shortwave infrared (SWIR) bands allows for an estimate of the fractional area of the hottest part of an active lava flow (fh), and the background temperature of the cooler crust (Tc). The use of a high spectral and spatial resolution imaging spectrometer with a wide dynamic range of 15 bits (DAIS 7915) in the wavelength range from 0.501 to 12.67 µm resulted in the identification of crustal temperature and fractional areas for an intra-crater hot spot at Mount Etna, Italy. This study indicates the existence of a relationship between these Tc and fh extracted from DAIS and Landsat TM data. When the dual band equation system is performed on a lava flow, a logarithmic distribution is obtained from a plot of the fractional area of the hottest temperature versus the temperature of the cooler crust. An entirely different distribution is obtained over active degassing vents, where increases in Tc occur without any increase in fh. This result indicates that we can use scatter plots of Tc vs. fh to discriminate between different types of volcanic activity, in this case between degassing vents and lava flows, using satellite thermal data.
    Description: Published
    Description: 641–651
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Mount Etna ; remote-sensing ; lava-flow ; degassing vent ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1347669 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The recent eruption of Mount Etna (July 2001) offered the opportunity to analyze magma-derived volatiles emitted during preand syn-eruptive phases, and to verify whether their composition is affected by changes in volcanic dynamics. This paper presents the results of analyses of F, Cl and S in the volcanic plume collected by filter-packs, and interprets variations in the composition based on contrasting solubility in magmas. A Rayleigh-type degassing mechanism was used to fit the acquired data and to estimate Henryâ s solubility constant ratios in Etnean basalt. This model provided insights into the dynamics of the volcano. Abundances of sulfur and halogens in eruptive plumes may help predict the temporal evolution of an ongoing effusive eruption.
    Description: -Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 1559
    Description: partially_open
    Keywords: magmatic degassing ; acidic gases ; plume chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 275912 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Monte Nuovo eruption is the most recent event that occurred at Phlegrean Fields (Italy) and lasted from 29 September to 6 October 1538. It was characterized by 2 days of quasi-sustained phreatomagmatic activity generating pumice-bearing pyroclastic density currents and forming a 130-m-high tuff cone (Lower Member deposits). The activity resumed after a pause of 2 days with two discrete Vulcanian explosions that emplaced radially distributed, scoria-bearing pyroclastic flows (Upper Member deposits). The juvenile products of Lower and Upper Members are, respectively, phenocryst-poor, light-coloured pumice and dark scoria fragments with K-phonolitic bulk compositions, identical in terms of both major and trace elements. Groundmass is formed by variable proportions of K-feldspar and glass, along with minor sodalite and Fe-Ti oxide present in the most crystallized samples. Investigations of groundmass compositions and textures were performed to assess the mechanisms of magma ascent, degassing and fragmentation along the conduit and implications for the eruptive dynamics. In pumice of the Lower Member groundmass crystal content increases from 13 to 28 vol% from the base to the top of the sequence. Products of the Upper Member consist of clasts with a groundmass crystal content between 30 and 40 vol% and of totally crystallized fragments. Crystal size distributions of groundmass feldspars shift from a single population at the base of the Lower Member to a double population in the remaining part of the sequence. The average size of both populations regularly increases from the Lower to the Upper Member. Crystal number density increases by two orders of magnitude from the Lower to the Upper Member, suggesting that nucleation dominated during the second phase of the eruption. The overall morphological, compositional and textural data suggest that the juvenile components of the Monte Nuovo eruption are likely to record variations of the magma properties within the conduit. The different textures of pumice clasts from the Lower Member possibly reflect horizontal gradients of the physical properties (P, T) of the ascending magma column, while scoriae from the second phase are thought to result from the disruption of a slowly rising plug crystallizing in response to degassing. In particular, crystal size distribution data point to syn-eruptive degassing-induced crystallization as responsible for the transition in eruptive style from the first to the second phase of the eruption. This mechanism not only has been proved to profoundly affect the dynamics of dome-forming calc-alkaline eruptions, but may also have a strong influence in driving the eruption dynamics of alkaline magmas of intermediate to evolved compositions.
    Description: Published
    Description: 601-621
    Description: reserved
    Keywords: Phlegrean Fields ; Vulcanian explosion ; Degassing ; Groundmass crystallization ; Eruption dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1175329 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Mud volcanoes represent the largest expression of natural methane release into the atmosphere; however, the gas flux has never been investigated in detail. Methane output from vents and diffuse soil degassing is herewith reported for the first time. Measurements were carried out at 5 mud volcano fields around Sicily (Italy). Each mud volcano is characterized by tens of vents and bubbling pools. In the quiescent phase, methane emission from single vents ranges between 0.01 and 6.8 kg/day. Diffuse soil leakage around the vents is in the order of 102–104 mg m 2 d 1. An exceptional flux of 106 mg m 2 d 1 was recorded close to an everlasting fire. Soil CH4 flux is positive even at large distances from the mud volcano fields suggesting a diffuse microseepage over wider areas. A total of at least 400 tons CH4 per year can be estimated over the area investigated alone ( 1.5 km2).
    Description: Published
    Description: 1215
    Description: partially_open
    Keywords: methane ; flux measurements ; Sicily ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 151114 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volcanic gas emissions from fumaroles on the rim of La Fossa crater, Vulcano Island, Italy, were measured simultaneously using direct sampling (for H2O, CO2, total sulfur, HCl and HF), filter packs (for SO2, HCl, HF) and short-path active-mode FTIR measurements (for H2O, CO2,SO2, HCl and HF) in an intercomparison study in May 2002. The results show that Cl/F ratios were in good agreement between all three methods, and that FTIR and direct sampling determined comparable proportions of CO2 and H2O. Amounts of total S observed in direct sampling data were approximately double the amounts of SO2 measured with filter packs and FTIR. This difference could be attributed either to the fact FTIR and filter packs do not measure reduced sulfur species (e.g., H2S) or to sublimation of elemental S upon exit from the fumarole, after collection by direct sampling but before detection with FTIR and filter packs.
    Description: Published
    Description: L02610
    Description: partially_open
    Keywords: volcanic gas techniques ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 434088 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C1/(C2 + C3))and the methane isotope ratios (d13C1), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration.
    Description: Published
    Description: L06607
    Description: partially_open
    Keywords: Isotopic composition/chemistry ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 1041380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr 1 and 0.01 kt yr 1 for Br and I, respectively, from April to October 2004, from which we estimate global Br and I fluxes of order 13 (range, 3â 40) and 0.11 (range, 0.04â 6.6) kt yr 1. Observed changes in plume composition highlight the coherent geochemical behavior of HCl, HF, HBr, and HI during magmatic degassing, and strong fractionation of these species with respect to SO2.
    Description: Published
    Description: Q08008
    Description: partially_open
    Keywords: bromine and iodine in volcanic gases ; halogen atmospheric chemistry ; volcanic degassing ; volcanic plumes ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 242159 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Ground-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume’s cross section, and multiplying by the plume’s transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental design and introducing large flux (can be 〉100%) errors. Here we present the first report of a single instrument capable of (accurate) volcanic SO2 flux measurements. This device records integrated SO2 concentrations and plume heights during traverses. Between traverses, two in-plume SO2 time series are measured from underneath the plume with the instrument, corresponding to zenith and inclined (user-specified angle from vertical in the direction of the volcano) fields of view, respectively. The distance between the points of intersection of the two views with the plume is found on the basis of the determined plume height, and the two signals are cross-correlated to determine the lag between them, enabling accurate derivation of the wind speed. We present flux data (with errors ±12%) obtained in this way at Mt. Etna during July 2004.
    Description: Published
    Description: Q02003
    Description: partially_open
    Keywords: DOAS ; volcanic SO2 emissions. ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 185006 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...