ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Rover missions to the surface of Mars after MER 2003, are likely to be centered around focused geologic field mapping. One objective with high priority in selecting landing sites for these missions will be to characterize the nature, spatial distribution, internal structure, composition, and depositional history of exposed sedimentary layered deposits by visiting a number of distributed outcrops identified previously (and with a high degree of certainty) from orbit. These deposits may contain prebiotic material, even fossil organisms, but their primary value will be to enable an assessment of the planet's climate at the time they were emplaced. High resolution imaging from a mobile rover will enable the detailed study of these deposits over a wide area, their internal structure and mineralogy at distributed localities, and could resolve biologically-derived structures (such as stromatolite-like textures) if they are present. With the addition of a spectrometer, it should be possible to ascertain the presence of carbonates, sulfates, organics, water (liquid, frost, and bound water), as well as a variety of silicate minerals in the context of the collected imagery. Such a mission approach is directly relevant to future exploration of Mars, because it provides the geologic context comparable to what a field geologist visiting a site for the first time would acquire. Rover missions after MER will likely have much better targeting and hazard avoidance landing systems, enabling access to planimetrically-challenged sites of high scientific interest. These vehicles will also likely have greater mobility than MER, capable of driving greater distances in a shorter amount of time. Many scientists and mission planners have realized the need to design a rover whose mobility can be comparable to the dimensions of its 3-sigma landing error ellipse.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs; 51-52; LPI-Contrib-1101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Using topography collected over one martian year from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor (MGS) spacecraft, we have measured temporal changes in the elevation of the martian surface that correlate with the seasonal cycle of carbon dioxide exchange between the surface and atmosphere. The greatest elevation change (1.5 to 2 meters) occurs at high latitudes ( above 80 degrees ), whereas the bulk of the mass exchange occurs at lower latitudes (below 75 degrees N and below 73 degrees S). An unexpected period of sublimation was observed during northern hemisphere autumn, coincident with dust storms in the southern hemisphere. Analysis of MGS Doppler tracking residuals revealed temporal variations in the flattening of Mars that correlate with elevation changes. The combined changes in gravity and elevation constrain the average density of seasonally deposited carbon dioxide to be 910 +/- 230 kilograms per cubic meter, which is considerably denser than terrestrial snow.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 294; 5549; 2141-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 1; 4; 523-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); Volume 17 Suppl 1; 81-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The western hemisphere of Mars is dominated by the formation of Tharsis, which is an enormous high-standing region (roughly 25% of the surface area of the planet) capped by volcanics, including the solar system's largest shield volcanoes. Tharsis is surrounded by an enormous radiating system of grabens and a circumferential system of wrinkle ridges that extends over the entire western hemisphere of Mars. This region is perhaps the largest and most long lived tectonic and volcanic province of any of the terrestrial planets with a well-preserved history of magmatic-driven activity that began in the Noachian and has lasted throughout Martian geologic time. Tharsis and the surrounding regions comprise numerous components, including volcanic constructs of varying sizes and extensive lava flow fields, large igneous plateaus, fault and ridge systems of varying extent and relative age of formation, gigantic outflow channel systems, vast system of canyons, and local and regional centers of tectonic activity. Many of these centers are interpreted to be the result of magmatic-related activity, including uplift, faulting, dike emplacement, volcanism, and local hydrothermal activity. Below we present a summary of our work for Tharsis focusing primarily on the earliest stage of development, the Noachian period. Here we hone in on the early centers and how they relate to the early development of the Tharsis Magmatic Complex (TMC).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs; 9-10; LPI-Contrib-1101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The objective of this project is to expand the capabilities of for the Mars Umbilical Technology Demonstrator (MUTD). The MUTD shall provide electrical power and fiber optic data cable connections between two simulated mars vehicles, 1000 in apart. ne wheeled mobile robot Omnibot is used to provide the mobile base for the system. The mate-to umbilical plate is mounted on a Cartesian robot, which is installed on the Omnibot mobile base. It is desirable to provide the operator controlling the Omnibot, the distance and direction to the target. In this report, an approach for finding the position and orientation of the mobile robot using inertial sensors and beacons is investigated. First phase of the project considered the Omnibot being on the flat surface. To deal with the uneven Mars environment, the orientation as well as position needs to be controlled. During local positioning, the information received from four ultrasonic sensors installed at the four corner of the mate-mi plate is used to identify the position of mate-to plate and mate the umbilical plates autonomously. The work proposed is the continuation of the principal investigator research effort as a participant in the 1999 NASA/ASEE Summer Faculty Fellowship Program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2000 Research Reports: NASA/ASEE Summer Faculty Fellowship Program; 101-111; NASA/CR-2001-210260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: This paper presents the human exploration of Mars in viewgraph form.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 119-124; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The contents include: 1) Crew Autonomy; 2) Bioastronautics Critical Path Roadmap (CPR); 3) CPR Issues; and 4) Clinical Problems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 60-68; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: A major long term NASA objective is to enable human exploration beyond low Earth orbit. This will take a strange approach, with a concentration on new, enabling technologies and capabilities. Mars robotic missions are logical and necessary steps in the progression toward eventual human missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 125-139; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The role of robots and humans in Mars Exploration is presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 27-38; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...