ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (655)
  • Cell & Developmental Biology
  • 2000-2004  (655)
  • 2000  (655)
  • 1
    Publication Date: 2000-12-23
    Description: The TATA-binding protein (TBP) is believed to function as a key component of the general transcription machinery. We tested the role of TBP during the onset of embryonic transcription by antisense oligonucleotide-mediated turnover of maternal TBP messenger RNA. Embryos without detectable TBP initiated gastrulation but died before completing gastrulation. The expression of many genes transcribed by RNA polymerase II and III was reduced; however, some genes were transcribed with an efficiency identical to that of TBP-containing embryos. Using a similar antisense strategy, we found that the TBP-like factor TLF/TRF2 is essential for development past the mid-blastula stage. Because TBP and a TLF factor play complementary roles in embryonic development, our results indicate that although similar mechanistic roles exist in common, TBP and TLF function differentially to control transcription of specific genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veenstra, G J -- Weeks, D L -- Wolffe, A P -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2312-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA. VeenstrG@exchange.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Embryo, Nonmammalian/*metabolism ; *Embryonic Development ; Gastrula/metabolism ; *Gene Expression Regulation, Developmental ; Oligonucleotides, Antisense/metabolism/pharmacology ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; TATA-Box Binding Protein ; Telomeric Repeat Binding Protein 2 ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Xenopus/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-12-23
    Description: Quantifying the moisture history of the Amazon Basin is essential for understanding the cause of rain forest diversity and its potential as a methane source. We reconstructed the Amazon River outflow history for the past 14,000 years to provide a moisture budget for the river drainage basin. The oxygen isotopic composition of planktonic foraminifera recovered from a marine sediment core in a region of Amazon River discharge shows that the Amazon Basin was extremely dry during the Younger Dryas, with the discharge reduced by at least 40% as compared with that of today. After the Younger Dryas, a meltwater-driven discharge event was followed by a steady increase in the Amazon Basin effective moisture throughout the Holocene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maslin, M A -- Burns, S J -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2285-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Change Research Centre, Department of Geography, University College London, 26 Bedford Way, London, WC1H 0AP, UK. mmaslin@geog.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125137" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Brazil ; *Climate ; Eukaryota/*chemistry ; *Fresh Water ; *Geologic Sediments ; Methane ; Oxygen Isotopes/*analysis ; Seawater ; Temperature ; Time Factors ; Zooplankton/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-12-23
    Description: In all eukaryotic organisms, inappropriate firing of replication origins during the G2 phase of the cell cycle is suppressed by cyclin-dependent kinases. Multicellular eukaryotes contain a second putative inhibitor of re-replication called geminin. Geminin is believed to block binding of the mini-chromosome maintenance (MCM) complex to origins of replication, but the mechanism of this inhibition is unclear. Here we show that geminin interacts tightly with Cdt1, a recently identified replication initiation factor necessary for MCM loading. The inhibition of DNA replication by geminin that is observed in cell-free DNA replication extracts is reversed by the addition of excess Cdt1. In the normal cell cycle, Cdt1 is present only in G1 and S, whereas geminin is present in S and G2 phases of the cell cycle. Together, these results suggest that geminin inhibits inappropriate origin firing by targeting Cdt1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wohlschlegel, J A -- Dwyer, B T -- Dhar, S K -- Cvetic, C -- Walter, J C -- Dutta, A -- CA60499/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125146" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/*metabolism/pharmacology ; Cell Nucleus/metabolism ; Cell-Free System ; Chromatin/metabolism ; *DNA Replication ; DNA-Binding Proteins/chemistry/*metabolism/pharmacology ; Evolution, Molecular ; G1 Phase ; G2 Phase ; Geminin ; HeLa Cells ; Humans ; *Interphase ; Molecular Sequence Data ; Molecular Weight ; Precipitin Tests ; Recombinant Fusion Proteins/metabolism ; Replication Origin ; *S Phase ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-12-23
    Description: Niemann-Pick type C2 disease (NP-C2) is a fatal hereditary disorder of unknown etiology characterized by defective egress of cholesterol from lysosomes. Here we show that the disease is caused by a deficiency in HE1, a ubiquitously expressed lysosomal protein identified previously as a cholesterol-binding protein. HE1 was undetectable in fibroblasts from NP-C2 patients but present in fibroblasts from unaffected controls and NP-C1 patients. Mutations in the HE1 gene, which maps to chromosome 14q24.3, were found in NP-C2 patients but not in controls. Treatment of NP-C2 fibroblasts with exogenous recombinant HE1 protein ameliorated lysosomal accumulation of low density lipoprotein-derived cholesterol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naureckiene, S -- Sleat, D E -- Lackland, H -- Fensom, A -- Vanier, M T -- Wattiaux, R -- Jadot, M -- Lobel, P -- DK45992/DK/NIDDK NIH HHS/ -- DK54317/DK/NIDDK NIH HHS/ -- NS37918/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125141" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; CHO Cells ; *Carrier Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; Cholesterol/*metabolism ; Cricetinae ; Culture Media, Conditioned ; Fibroblasts/metabolism ; Glycoproteins/chemistry/*genetics/*metabolism/pharmacology ; Humans ; Lysosomes/*metabolism ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Rats ; Receptor, IGF Type 2/metabolism ; Recombinant Proteins/metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-12-16
    Description: Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huh, G S -- Boulanger, L M -- Du, H -- Riquelme, P A -- Brotz, T M -- Shatz, C J -- 1F32EY07016/EY/NEI NIH HHS/ -- EY06912/EY/NEI NIH HHS/ -- F32 EY007016/EY/NEI NIH HHS/ -- F32 EY007016-02/EY/NEI NIH HHS/ -- F32 EY007016-03/EY/NEI NIH HHS/ -- MH48108/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2155-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. gshuh@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD3/genetics/*physiology ; Brain/growth & development/*physiology ; Excitatory Postsynaptic Potentials ; Gene Expression Profiling ; Genes, MHC Class I ; Geniculate Bodies/physiology ; Hippocampus/growth & development/physiology ; Histocompatibility Antigens Class I/genetics/*physiology ; In Situ Hybridization ; Long-Term Potentiation ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Mutant Strains ; Neural Pathways ; *Neuronal Plasticity ; Neurons/*physiology ; Receptors, GABA-A/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Retina/growth & development/physiology ; Retinal Ganglion Cells/physiology ; Signal Transduction ; Synapses/*physiology ; Synaptic Transmission ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-12-16
    Description: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riechmann, J L -- Heard, J -- Martin, G -- Reuber, L -- Jiang, C -- Keddie, J -- Adam, L -- Pineda, O -- Ratcliffe, O J -- Samaha, R R -- Creelman, R -- Pilgrim, M -- Broun, P -- Zhang, J Z -- Ghandehari, D -- Sherman, B K -- Yu, G -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2105-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA. jriechmann@mendelbio.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118137" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Arabidopsis/chemistry/*genetics ; Caenorhabditis elegans/chemistry/*genetics ; DNA/metabolism ; Drosophila melanogaster/chemistry/*genetics ; Eukaryotic Cells ; Evolution, Molecular ; Gene Duplication ; *Genome ; Genome, Plant ; Protein Binding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics ; Transcription Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-12-16
    Description: Dendritic cells (DCs) are critical in both initiating adaptive immune responses and maintaining tolerance to self antigens. These apparently contradictory roles have been suggested to depend on different subsets of DCs that arise from either myeloid or lymphoid hematopoietic origins, respectively. Although DC expression of CD8alpha is attributed to a lymphoid origin, here we show that both CD8alpha+ and CD8alpha- DCs can arise from clonogenic common myeloid progenitors in both thymus and spleen. Thus, expression of CD8alpha is not indicative of a lymphoid origin, and phenotypic and functional differences among DC subsets are likely to reflect maturation status rather than ontogeny.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Traver, D -- Akashi, K -- Manz, M -- Merad, M -- Miyamoto, T -- Engleman, E G -- Weissman, I L -- 5T32 AI-07290/AI/NIAID NIH HHS/ -- CA42551/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2152-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118150" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/analysis ; Antigens, CD8/*analysis ; B-Lymphocytes/cytology/immunology ; Cell Lineage ; Dendritic Cells/*cytology/*immunology ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/cytology ; Immunophenotyping ; Mice ; Mice, Inbred C57BL ; Myeloid Progenitor Cells/*cytology/transplantation ; Spleen/*cytology/immunology ; T-Lymphocytes/cytology/immunology ; Thymus Gland/*cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-12-16
    Description: Aging is genetically determined and environmentally modulated. In a study of longevity in the adult fruit fly, Drosophila melanogaster, we found that five independent P-element insertional mutations in a single gene resulted in a near doubling of the average adult life-span without a decline in fertility or physical activity. Sequence analysis revealed that the product of this gene, named Indy (for I'm not dead yet), is most closely related to a mammalian sodium dicarboxylate cotransporter-a membrane protein that transports Krebs cycle intermediates. Indy was most abundantly expressed in the fat body, midgut, and oenocytes: the principal sites of intermediary metabolism in the fly. Excision of the P element resulted in a reversion to normal life-span. These mutations may create a metabolic state that mimics caloric restriction, which has been shown to extend life-span.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rogina, B -- Reenan, R A -- Nilsen, S P -- Helfand, S L -- AG14532/AG/NIA NIH HHS/ -- AG16667/AG/NIA NIH HHS/ -- R37 AG016667/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2137-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118146" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Amino Acid Sequence ; Animals ; Behavior, Animal ; Biological Transport ; Carrier Proteins/chemistry/*genetics/metabolism ; Crosses, Genetic ; DNA Transposable Elements ; *Dicarboxylic Acid Transporters ; Digestive System/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/*genetics/metabolism/physiology ; Energy Intake ; Energy Metabolism ; Fat Body/metabolism ; Female ; Fertility ; Gene Expression ; *Genes, Insect ; Longevity/*genetics ; Male ; Membrane Proteins/chemistry/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutagenesis, Site-Directed ; *Organic Anion Transporters, Sodium-Dependent ; Sense Organs/cytology/metabolism ; Sequence Homology, Amino Acid ; *Symporters
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-12-16
    Description: Discussions of the environmental risks and benefits of adopting genetically engineered organisms are highly polarized between pro- and anti-biotechnology groups, but the current state of our knowledge is frequently overlooked in this debate. A review of existing scientific literature reveals that key experiments on both the environmental risks and benefits are lacking. The complexity of ecological systems presents considerable challenges for experiments to assess the risks and benefits and inevitable uncertainties of genetically engineered plants. Collectively, existing studies emphasize that these can vary spatially, temporally, and according to the trait and cultivar modified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolfenbarger, L L -- Phifer, P R -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2088-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉AAAS Environmental Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, 1200 Pennsylvania Avenue, NW (8601D), Washington, DC 20460, USA. wolfenbarger.lareesa@epa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118136" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; Crops, Agricultural/*genetics/physiology ; *Ecosystem ; Genes, Plant ; *Genetic Engineering ; Pesticides ; Plant Diseases ; Plants/*genetics ; *Plants, Genetically Modified/genetics/physiology ; Reproduction ; Risk ; Soil ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-12-16
    Description: The retinoid X receptor (RXR) is a nuclear receptor that functions as a ligand-activated transcription factor. Little is known about the ligands that activate RXR in vivo. Here, we identified a factor in brain tissue from adult mice that activates RXR in cell-based assays. Purification and analysis of the factor by mass spectrometry revealed that it is docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid that is highly enriched in the adult mammalian brain. Previous work has shown that DHA is essential for brain maturation, and deficiency of DHA in both rodents and humans leads to impaired spatial learning and other abnormalities. These data suggest that DHA may influence neural function through activation of an RXR signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Urquiza, A M -- Liu, S -- Sjoberg, M -- Zetterstrom, R H -- Griffiths, W -- Sjovall, J -- Perlmann, T -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2140-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Assay ; Brain/growth & development/metabolism ; *Brain Chemistry ; Cell Line ; Chromatography, High Pressure Liquid ; Culture Media, Conditioned ; Dimerization ; Docosahexaenoic Acids/*isolation & purification/*metabolism/pharmacology ; Fatty Acids, Unsaturated/pharmacology ; Histone Acetyltransferases ; Humans ; Ligands ; Male ; Mice ; Nuclear Receptor Coactivator 1 ; Receptors, Retinoic Acid/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Signal Transduction ; Spectrometry, Mass, Electrospray Ionization ; Transcription Factors/genetics/*metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...