ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Turbulence  (9)
  • Springer  (9)
  • American Association for the Advancement of Science
  • American Meteorological Society
  • 1995-1999  (9)
  • 1990-1994
  • 1999  (9)
  • Geosciences  (9)
Collection
  • Articles  (9)
Publisher
  • Springer  (9)
  • American Association for the Advancement of Science
  • American Meteorological Society
Years
  • 1995-1999  (9)
  • 1990-1994
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 91 (1999), S. 227-257 
    ISSN: 1573-1472
    Keywords: Coastal boundary layer ; Initialisation ; Mesoscale model ; Sea model breeze ; Thermal internal boundary layer ; Turbulence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A numerical two-dimensional-mesoscale model with a level 1.5 closure scheme for turbulence is described. The model is used to simulate the boundary layer over coastal complex terrain. Meteorological data available from the Øresund land-sea-land terrain experiment are used to study the performance of the model. The model could simulate generally observed complexities in the mean wind and temperature fields. Internal boundary layers over the water and land surfaces were identified by the height of lowest value in the turbulence kinetic energy profile and this showed good agreement with radiosonde (RS) observations. Some disagreements with the data were also noticed, especially near the surface. The wind speed was over-predicted. Attempts were made to improve the model performance by adopting different schemes for model initialisation. Results showed that initialisation with an early model start time and observed wind profile near the inflow boundary improved the performance. The wind speed over-prediction could be further minimised by using a more realistic objective initialisation scheme. The problem centred around the proper estimation of the turbulent diffusion coefficient K through the closure scheme. Despite using the most popular empirical relationships in the level 1.5 closure scheme, these differences persisted. While this needs further investigation, the present model can be used to supply wind fields for practical purposes such as air pollution calculations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 91 (1999), S. 483-493 
    ISSN: 1573-1472
    Keywords: Turbulence ; Flow distortion ; Sonic anemometers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We carried out measurements to test a simple theory of the effect of probe-induced flow distortion on turbulence measurements. We used two three-component sonic anemometers mounted 1.8m apart at a height of 6.7 m. Behind one was a horizontal circular cylinder of radius 0.15 m and length 1.2 m, chosen to model two-dimensional probe-induced flow distortion in the limit where the scale of the turbulence is very large compared to the scale of the probe. The second sonic anemometer measured the undistorted flow. The measured flow-distortion effects on the Reynolds shearing stress and the variances of streamwise and vertical velocity agree well with the theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 92 (1999), S. 37-63 
    ISSN: 1573-1472
    Keywords: Energy balance ; Glacier ; Katabatic flow ; Stable boundary layer ; Turbulence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Turbulence measurements performed in a stable boundary layer over the sloping ice surface of the Vatnajökull in Iceland are described. The boundary layer, in which katabatic forces are stronger than the large-scale forces, has a structure that closely resembles that of a stable boundary layer overlying a flat land surface, although there are some important differences. In order to compare the two situations the set-up of the instruments on an ice cap in Iceland was reproduced on a flat grass surface at Cabauw, the Netherlands. Wind speed and temperature gradients were calculated and combined with flux measurements made with a sonic anemometer in order to obtain the local stability functions φm and φh as a function of the local stability parameter z/L. Unlike the situation at Cabauw, where φm was linear as a function of z/L, in the katabatically forced boundary layer, the dependence of φm on stability was found to be non-linear and related to the height of the wind maximum. Thermal stratification and the depth of the stable boundary layer however seem to be rather similar under these two different forcing conditions. Furthermore, measurements on the ice were used to construct the energy balance. These showed good agreement between observed melt and components contributing to the energy balance: net radiation (supplying 55% of the energy), sensible heat flux (30%) and latent heat flux (15%). Local sources and sinks in the turbulent kinetic energy budget are summed and indicate a reasonable balance in near-neutral conditions but not in more stable situations. The standard deviation of the velocity fluctuations σu, σv, and σw, can be scaled satisfactorily with the local friction velocity u* and the standard deviation of the temperature fluctuation σθ with the local temperature scale θ*.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 92 (1999), S. 165-183 
    ISSN: 1573-1472
    Keywords: Coherent structures ; Turbulence ; Surface layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Multi-level turbulent wind data from the Risø Air-Sea Experiments (RASEX) were used to examine the structure of large-scale motions in the marine atmospheric surface layer. The quadrant technique was used to identify flux events (ejections/sweeps). Ejections, which appear to occur in groups, are seen to occur first at the upper level, moving successively to lower levels with small time delays. A strong correlation between events at different heights suggests that they may all be part of a single large structure. Cross-correlation between velocity signals was used to estimate orientation of the structure using Taylor's hypothesis. The inclination of this structure is shallow (≃ 15°) near the surface and increases with height. Spatial representations of the fluctuating wind vectors show a structure that is strikingly similar to conceptual models of transverse vortices and shear layers seen in laboratory flows and direct numerical simulation (DNS) of low Reynolds number flows. Spatial visualization of velocity fluctuations during other time periods and conditions clearly shows the existence of shear layers, transverse vortices, plumes, and downdrafts of various sizes and strengths. A quantitative analysis shows an increase in the frequency of shear related events with increasing wind speed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-1472
    Keywords: Closure models ; Drizzle ; Entrainment ; Large Eddy Simulation ; Observations ; Stratocumulus ; Turbulence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions. The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-1472
    Keywords: Atmospheric surface layer ; Longitudinal velocity fluctuations ; Multifractals ; Spectra ; Statistical analysis ; Turbulence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The multiscaling statistics of atmospheric surface-layer winds at low wavenumbers above farmland and in the lee of a mountain range were examined using a hot-wire and lightweight cup anemometer. It was found that the horizontal velocity spectra could be broken into high and low-wavenumber regimes according to the parameters given by this analysis. The low-wavenumber end of the spectrum possessed a spectral slope parameter that varied between values of 0.8 and 1.35 at the farmland site during the period of the experiment, and the high-wavenumber end – corresponding to the inertial range – possessed a spectral slope slightly greater than -5/3. The larger values for this parameter for the low-wavenumber end appeared to coincide with unstable conditions. In the lee of the mountain range, the low-wavenumber spectral slope parameter was larger still, at 1.45. The low-wavenumber signals over farmland were much less intermittent than inertial-range signals, but in the lee of the mountain range the intermittency increased. From this analysis, it was shown that the statistical properties of the recorded wind signal could be reproduced using a bounded random multiplicative cascade. The model was successfully used to simulate the wind velocity field directly, rather than simulating the energy dissipation field. Since the spectral slope parameter for low wavenumbers appeared to be a function of atmospheric stability, the method presented is a simple way of generating wind signals characteristic of a variety of atmospheric conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 92 (1999), S. 99-121 
    ISSN: 1573-1472
    Keywords: Displacement height ; Ice surface roughness ; Katabatic flow ; Stable boundary layer ; Turbulence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Wind profile and eddy-correlation data obtained at two sites on a melting glacier surface in Iceland during the summer of 1996 are presented. Throughout the experiment the surface roughness increased rapidly from smooth to very rough, with the largest roughness element height obtained being about 1.7 m. In a layer close to the rough surface we find that the wind speed profiles were disturbed showing horizontal inhomogeneities as in a roughness sublayer. Its height was approximately two times the height of the main roughness elements (h) at both sites throughout the experiment. From the wind profiles and eddy-correlation data we calculated corrections for the displaced zero plane as a function of time and compared these with results obtained from a drag partitioning model. In general, the agreement was reasonable considering the ranges of uncertainty but the results indicate that the increasing horizontal anisotropy of the surface probably limits the use of the model. The values obtained for the roughness lengths are in good agreement with those calculated from a simple linear model, i.e., z0/h = 0.5λ with λ the frontal area index. Above the roughness sublayer the wind profiles, normalised standard deviations of wind speed, and the balance of the turbulence kinetic energy budget behaved as over an ideal homogeneous surface thereby confirming similarity of the flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 90 (1999), S. 397-421 
    ISSN: 1573-1472
    Keywords: Gravity waves ; Planetary boundary layer ; Turbulence ; Wind structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The stably-stratified planetary boundary layer contains small-vertical-scale, step-like structures, waves on a multitude of scales, large horizontal eddies and small-scale turbulence, all of which constantly interact with, and modify, one another. Current knowledge of how the various components act in the vicinity of the step-like structures is surveyed. It is concluded that packets of internal waves are the main conduit for interaction within and across the boundary layer, and low-intensity critical-level absorption at the fringes of their spectrum probably maintains the step-like structures. Further investigation of the processes requires intensive observations of the four-dimensional structure of the region, but such an investigation will need a new generation of high-resolution sensing systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 92 (1999), S. 263-291 
    ISSN: 1573-1472
    Keywords: Convective adjustment ; Turbulence ; Mixing ; Nonlocal mixing ; Parameterization ; Numerical weather prediction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A nonlocal turbulent mixing parameterization is introduced in this study and denoted by the acronym NTAC, which stands for Nonlocal parameterization of Turbulent mixing using convective Adjustment Concepts. NTAC uses the average value of quantities in the turbulent domain in much the same way that local convective adjustment schemes use the average potential temperature. Averages are determined in the region with non-convective turbulence using information from the two end layers (denoted by TLA, Two Layer Average), while all layers contribute to the average in regions with convective turbulence (denoted by CLA, Convective Layer Average). The NTAC parameterization estimates the mixing percentage and uses this percentage as a mixing coefficient. These percentages are determined from a simplified turbulent kinetic energy equation. The scheme is versatile, conservative, and when programmed efficiently the proposed parameterization is a computationally acceptable nonlocal procedure that can be used in many existing numerical weather prediction forecast models. Numerical weather forecast model simulations using the NTAC parameterization and traditional K-theory are compared against radiosonde data. The accuracy of the proposed NTAC parameterization is found to be competitive with K theory. The greatest improvement of the NTAC over K-theory occurs during the daytime and early nighttime hours when (dry) convective activity is high. Also, areal cloud coverage is increased by the NTAC parameterization. Our findings show that the greatest nonlocal vertical mixing occurs between the layer nearest the earth's surface and the remaining layers making up the planetary boundary layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...