ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02021, doi:10.1029/2007JG000482.
    Description: Microbial activity in saturated, subsurface sediments in riparian forests may be supported by recent photosynthate or ancient (〉500 ybp) soil organic carbon (SOC) in buried horizons. Metabolism of ancient SOC may be particularly important in riparian zones, considered denitrification hot spots, because denitrification in the riparian subsurface is often C-limited, because buried horizons intersect deep flow paths, and because low C mineralization rates can support ecosystem-relevant rates of denitrification. Buried horizons are common where alluvial processes (stream migration, overbank flow) have dominated riparian evolution. Our objectives were to determine: (1) the extent to which ancient SOC directly supports subsurface microbial activity; (2) whether different C sources support microbial activity in alluvial versus glaciofluvial riparian zones; and (3) how microbial use of ancient SOC varies with depth. In situ groundwater incubations and 14C dating of dissolved inorganic carbon revealed that ancient SOC mineralization was common, and that it constituted 31–100% of C mineralization 2.6 m deep at one site, at rates sufficient to influence landscape N budgets. Our data failed to reveal consistent spatial patterns of microbially available ancient C. Although mineralized C age increased with depth at one alluvial site, we observed ancient C metabolism 150 cm deep at a glaciofluvial site, suggesting that subsurface microbial activity in riparian zones does not vary systematically between alluvial and glaciofluvial hydrogeologic settings. These findings underscore the relevance of ancient C to contemporary ecosystem processes and the challenge of using mappable surface features to identify subsurface ecosystem characteristics or riparian zone N-sink strength.
    Description: We are grateful to the Cornell Program in Biogeochemistry for graduate research grants and to the U.S. EPA for a STAR Graduate Fellowship to Noel Gurwick. Support for radiocarbon analyses also came from USDANRICGP grant 99–35102– 8266, NSF cooperative agreement OCE-9807266, and an Andrew W. Mellon Foundation grant to the Institute of Ecosystem Studies. A graduate research grant to N. Gurwick from the Theresa Heinz Scholars for Environmental Research provided salary for Pete Seitz-Rundlett.
    Keywords: Riparian zone ; Alluvium ; Groundwater ; Denitrification ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 8515, doi:10.1029/2003GC000609.
    Description: Complete multibeam bathymetric coverage of the western Galápagos Spreading Center (GSC) between 90.5°W and 98°W reveals the fine-scale morphology, segmentation and influence of the Galápagos hot spot on this intermediate spreading ridge. The western GSC comprises three morphologically defined provinces: A Western Province, located farthest from the Galápagos hot spot west of 95°30′W, is characterized by an axial deep, rift valley morphology with individual, overlapping, E-W striking segments separated by non-transform offsets; A Middle Province, between the propagating rift tips at 93°15′W and 95°30′W, with transitional axial morphology strikes ∼276°; An Eastern Province, closest to the Galápagos hot spot between the ∼90°50′W Galápagos Transform and 93°15′W, with an axial high morphology generally less than 1800 m deep, strikes ∼280°. At a finer scale, the axial region consists of 32 individual segments defined on the basis of smaller, mainly 〈2 km, offsets. These offsets mainly step left in the Western and Middle Provinces, and right in the Eastern Province. Glass compositions indicate that the GSC is segmented magmatically into 8 broad regions, with Mg # generally decreasing to the west within each region. Striking differences in bathymetric and lava fractionation patterns between the propagating rifts with tips at 93°15′W and 95°30′W reflect lower overall magma supply and larger offset distance at the latter. The structure of the Eastern Province is complicated by the intersection of a series of volcanic lineaments that appear to radiate away from a point located on the northern edge of the Galápagos platform, close to the southern limit of the Galápagos Fracture Zone. Where these lineaments intersect the GSC, the ridge axis is displaced to the south through a series of overlapping spreading centers (OSCs); abandoned OSC limbs lie even farther south. We propose that southward displacement of the axis is promoted during intermittent times of increased plume activity, when lithospheric zones of weakness become volcanically active. Following cessation of the increased plume activity, the axis straightens by decapitating southernmost OSC limbs during short-lived propagation events. This process contributes to the number of right stepping offsets in the Eastern Province.
    Description: This work was supported by NSF grants OCE98- 18632 to the University of Hawai’i and OCE98-19117 to the Woods Hole Oceanographic Institution; support was provided to M. B. by a CIW/DTM Postdoctoral Fellowship
    Keywords: Mid-ocean ridges ; Mantle plumes ; Segmentation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04015, doi:10.1029/2007GC001611.
    Description: Near-bottom magnetic data collected along the crest of the East Pacific Rise between 9°55′ and 9°25′N identify the Central Anomaly Magnetization High (CAMH), a geomagnetic anomaly modulated by crustal accretionary processes over timescales of ∼104 years. A significant decrease in CAMH amplitude is observed along-axis from north to south, with the steepest gradient between 9°42′ and 9°36′N. The source of this variation is neither a systematic change in geochemistry nor varying paleointensity at the time of lava eruption. Instead, magnetic moment models show that it can be accounted for by an observed ∼50% decrease in seismic Layer 2A thickness along-axis. Layer 2A is assumed to be the extrusive volcanic layer, and we propose that this composes most of the magnetic source layer along the ridge axis. The 9°37′N overlapping spreading center (OSC) is located at the southern end of the steep CAMH gradient, and the 9°42′–9°36′N ridge segment is interpreted to be a transition zone in crustal accretion processes, with robust magmatism north of 9°42′N and relatively low magmatism at present south of 9°36′N. The 9°37′N OSC is also the only bathymetric discontinuity associated with a shift in the CAMH peak, which deviates ∼0.7 km to the west of the axial summit trough, indicating southward migration of the OSC. CAMH boundaries (defined from the maximum gradients) lie within or overlie the neovolcanic zone (NVZ) boundaries throughout our survey area, implying a systematic relationship between recent volcanic activity and CAMH source. Maximum flow distances and minimum lava dip angles are inferred on the basis of the lateral distance between the NVZ and CAMH boundaries. Lava dip angles average ∼14° toward the ridge axis, which agrees well with previous observations and offers a new method for estimating lava dip angles along fast spreading ridges where volcanic sequences are not exposed.
    Description: The research project was funded by National Science Foundation under grants OCE-9819261 and OCE- 0096468.
    Keywords: East Pacific Rise ; Magnetic anomalies ; Mid-ocean ridges ; Volcanic processes ; Magnetic source layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04005, doi:10.1029/2007GC001816.
    Description: We report a detailed programmed-temperature pyrolysis/combustion methodology for radiocarbon (14C) dating of Antarctic sub-ice shelf sediments. The method targets the autochthonous organic component in sediments that contain a distribution of acid-insoluble organic components from several sources of different ages. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves by yielding maximum age constraints significantly younger than bulk radiocarbon dates from the same sediment horizons. The method proves adequate in determining isotope ratios of the pre-aged carbon end-member; however, the isotopic compositions of the low-temperature measurements indicate that no samples completely avoided mixing with some proportion of pre-aged organic material. Dating the unresolved but desired young end-member must rely on indirect methods, but a simple mixing model cannot be developed without knowledge of the sedimentation rate or comparable constraints. A mathematical approach allowing for multiple mixing components yields a maximum likelihood age, a first-order approximation of the relative proportion of the autochthonous component, and the temperature at which allochthonous carbon begins to volatilize and mix with the autochthonous component. It is likely that our estimation of the cutoff temperature will be improved with knowledge of the pyrolysis kinetics of the major components. Chronology is improved relative to bulk acid-insoluble organic material ages from nine temperature interval dates down to two, but incorporation of inherently more pre-aged carbon in the first division becomes more apparent with fewer and larger temperature intervals.
    Description: The project was paid for in part by NSF research grants OPP 02-30089 and OPP 03-38142 to Hamilton College (E. Domack) and NSF Cooperative Agreement OCE- 0228996 to Woods Hole Oceanographic Institution.
    Keywords: Antarctica ; Sediment chronology ; Radiocarbon ; Pyrolysis ; Sedimentary organic material ; Carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.
    Description: We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.).
    Keywords: Mid-ocean ridges ; Faulting ; Magmatism ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB2018, doi:10.1029/2004GB002422.
    Description: Surface sediments along a transect from an abyssal site in the northeastern Pacific (Station M, 34°50′N, 123°00′W) to a small mountainous river on the California coast (Santa Clara River) were studied to investigate the sources and cycling of organic matter on the continental margin. Sediment samples were separated into organic compound fractions (extractable lipids, amino acids (THAA), carbohydrates (TCHO), and the acid-insoluble fraction), and their carbon isotope ratios were measured. The Δ14C values of all the THAA and TCHO fractions were greater than −100‰, indicating relatively modern organic carbon (OC) source(s), and rapid cycling of these fractions. In contrast, the Δ14C values of extractable lipids and the acid-insoluble fraction were distinctly lower than those of the THAA and TCHO fractions. The Δ14C values of source OC to the sediments were estimated using a simple mixed layer model. These values were lower than the Δ14C signatures of pre-industrial plankton suggesting input of both old OC and contemporary plankton to the margin sediments. The source of old OC at the 2000-m site was likely from laterally transported coastal sediment. The estimated low Δ14C value of the transported OC suggests that old lipids and acid-insoluble material were selectively transported to the 2000-m site. The contribution of riverine POC to the margin sediments were estimated from Δ14C and δ13C values and indicate that relict OC exported by rivers was an important source of old lipids and acid-insoluble material to sedimentary OC on the shelf.
    Description: This research was supported by NSF OCE Chemical Oceanography Program and ACS Petroleum Research Fund (to E. R. M. D.), the UCOP Marine Science Fellowship Program (to J. H.), and the Dreyfus Foundation for an Environmental Science Postdoctoral Fellowship grant (to T. K.).
    Keywords: Lateral transport ; Organic matter ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4012, doi:10.1029/2004PA001029.
    Description: Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The δ18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ∼4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern δ18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial δ18O changes of at least 2.2‰, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ∼2.3 km, glacial δ13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, δ13C decreased continually to −0.5‰, about equal to the lowest LGM δ13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores 〉2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ∼1500 years at 4250 m and at ∼4700 m. Apparent ventilation ages are presently unavailable for the LGM 〈 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM δ13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages 〈2.3 km water depth were about the same as North Atlantic Deep Water today. Below ∼2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.
    Description: NSF supported this project through several OCE grants over the course of ten years, and most recently by ATM-9905550.
    Keywords: Radiocarbon ; Ocean ventilation ; Western North Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): D10301, doi:10.1029/2009JD012810.
    Description: Compound specific radiocarbon analyses of atmospheric formaldehyde are reported as fraction modern (Fm) for a limited number of winter and summer air samples collected in coastal southern New England in 2007. The 11 of 13 samples with Fm 〈 0.2 were collected under the influence of the semipermanent Bermuda high-pressure system with transport from the Washington, D. C., to New York City urban corridor. The two samples with Fm 〉 0.2 (max ∼ 0.35) were collected on days with strong northwesterly flow and the least urban impact. The Fm data were combined with VOC observations from the Rhode Island Department of Environmental Management, estimates of oxygenated VOC (OVOC), and back trajectories to interpret the relative contributions of biogenic and fossil carbon sources. It is argued that CH2O sources were dominated by pollutant VOCs and OVOCs from upwind coastal cities as opposed to more local biogenic VOCs at the times of sample collection.
    Description: This research was supported by a graduate student internship program at WHOI National Ocean Sciences Accelerator Mass Spectrometry Facility (NSF OCE‐9807266) and by NASA project NNG04GB38G.
    Keywords: Formaldehyde ; Radiocarbon ; Volatile organic compounds ; Oxygenated volatile organic compounds ; Ozone ; Troposphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q08014, doi:10.1029/2012GC004163.
    Description: Mapping and sampling of 18 eruptive units in two study areas along the Galápagos Spreading Center (GSC) provide insight into how magma supply affects mid-ocean ridge (MOR) volcanic eruptions. The two study areas have similar spreading rates (53 versus 55 mm/yr), but differ by 30% in the time-averaged rate of magma supply (0.3 × 106 versus 0.4 × 106 m3/yr/km). Detailed geologic maps of each study area incorporate observations of flow contacts and sediment thickness, in addition to sample petrology, geomagnetic paleointensity, and inferences from high-resolution bathymetry data. At the lower-magma-supply study area, eruptions typically produce irregularly shaped clusters of pillow mounds with total eruptive volumes ranging from 0.09 to 1.3 km3. At the higher-magma-supply study area, lava morphologies characteristic of higher effusion rates are more common, eruptions typically occur along elongated fissures, and eruptive volumes are an order of magnitude smaller (0.002–0.13 km3). At this site, glass MgO contents (2.7–8.4 wt. %) and corresponding liquidus temperatures are lower on average, and more variable, than those at the lower-magma-supply study area (6.2–9.1 wt. % MgO). The differences in eruptive volume, lava temperature, morphology, and inferred eruption rates observed between the two areas along the GSC are similar to those that have previously been related to variable spreading rates on the global MOR system. Importantly, the documentation of multiple sequences of eruptions at each study area, representing hundreds to thousands of years, provides constraints on the variability in eruptive style at a given magma supply and spreading rate.
    Description: This work was supported by the National Science Foundation grants OCE08–49813, OCE08–50052, and OCE08– 49711.
    Description: 2013-02-25
    Keywords: Galapagos Spreading Center ; Lava flow ; Mid-ocean ridges ; Submarine volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA2209, doi:10.1029/2007PA001527.
    Description: The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal δ 18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased Δ14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ∼3040 and ∼4930 cal years B.P. is ∼292 ± 30 years, less than the canonical value of 404 ± 20 years.
    Description: NSF Chemical Oceanography program provided monetary support under grants OCE-9711326, OCE-0137207, and OCE-0551940 (to ERMD).
    Keywords: Reservoir age ; Radiocarbon ; Corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 24 (2009): PA4212, doi:10.1029/2008PA001727.
    Description: Most seafloor sediments are dated with radiocarbon, and the sediment is assumed to be zero-age (modern) when the signal of atmospheric testing of nuclear weapons is present (Fraction modern (Fm) 〉 1). Using a simple mass balance, we show that even with Fm 〉 1, half of the planktonic foraminifera at the seafloor can be centuries old, because of bioturbation. This calculation, and data from four core sites in the western North Atlantic indicate that, first, during some part of the Little Ice Age (LIA) there may have been more Antarctic Bottom Water than today in the deep western North Atlantic. Alternatively, bioturbation may have introduced much older benthic foraminifera into surface sediments. Second, paleo-based warming of Sargasso Sea surface waters since the LIA must lag the actual warming because of bioturbation of older and colder foraminifera.
    Description: This work was funded in part by the Gary Comer Foundation and by NSF grant 0214144. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
    Keywords: Radiocarbon ; Core top ; Bioturbation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08001, doi:10.1029/2007GC001922.
    Description: Multichannel seismic and bathymetric data from the Juan de Fuca Ridge (JDFR) provide constraints on axial and ridge flank structure for the past 4–8 Ma within three spreading corridors crossing Cleft, Northern Symmetric, and Endeavour segments. Along-axis data reveal south-to-north gradients in seafloor relief and presence and depth of the crustal magma lens, which indicate a warmer axial regime to the south, both on a regional scale and within individual segments. For young crust, cross-axis lines reveal differences between segments in Moho two-way traveltimes of 200–300 ms which indicate 0.5–1 km thicker crust at Endeavour and Cleft compared to Northern Symmetric. Moho traveltime anomalies extend beyond the 5–15 km wide axial high and coincide with distinct plateaus, 32 and 40 km wide and 200–400 m high, found at both segments. On older crust, Moho traveltimes are similar for all three segments (∼2100 ± 100 ms), indicating little difference in average crustal production prior to ∼0.6 and 0.7 Ma. The presence of broad axis-centered bathymetric plateau with thickened crust at Cleft and Endeavour segments is attributed to recent initiation of ridge axis-centered melt anomalies associated with the Cobb hot spot and the Heckle melt anomaly. Increased melt supply at Cleft segment upon initiation of Axial Volcano and southward propagation of Endeavour segment during the Brunhes point to rapid southward directed along-axis channeling of melt anomalies linked to these hot spots. Preferential southward flow of the Cobb and Heckle melt anomalies and the regional-scale south-to-north gradients in ridge structure along the JDFR may reflect influence of the northwesterly absolute motion of the ridge axis on subaxial melt distribution.
    Description: This work was supported by U.S. National Science Foundation grants OCE00-02488 to S.M.C., OCE06-48303 to S.M.C. and M.R.N., OCE-0648923 to J.P.C., and OCE00-02600 to G.M.K. and A.J.H.
    Keywords: Mid-ocean ridges ; Juan de Fuca Ridge ; Hot spot ; Multichannel seismic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 24 (2010): GB4016, doi:10.1029/2010GB003802.
    Description: Particulate organic carbon (POC) in the ocean often exhibits more depleted radiocarbon contents (lower Δ 14C values) than expected if its sole source were POC recently synthesized by primary production and export from the overlying surface waters. An examination of available Δ14C data sets for sinking POC show that this phenomenon is both common and globally widespread. Also, a strong correlation is found to exist between Δ14C values of organic carbon and aluminum content in sinking particles that is consistent over a range of oceanic settings. Together, these findings imply that aged organic carbon associated with lithogenic material from sediment resuspension is responsible for the observed low Δ 14C values as opposed to other processes such as incorporation of dissolved inorganic carbon or dissolved organic carbon into POC at depth. An estimate based on POC flux-weighted Δ14C values shows that about 35% of sinking POC at the locations studied is derived from resuspended sediment. Our results suggest that resuspension of sediment and its subsequent lateral transport is an important component of the oceanic carbon cycle and should be considered in models of oceanic carbon export and burial.
    Description: This research was funded by the NSF Ocean Sciences Division (Chemical Oceanography program) and by the Ocean and Climate Change Institute and Arctic Research Initiative at the Woods Hole Oceanographic Institution.
    Keywords: Particulate organic carbon ; Sediment resuspension ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L19703, doi:10.1029/2012GL052883.
    Description: Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.
    Description: This work was partially supported by U.S. National Science Foundation (NSF) Cooperative Agreement OCE-228996 to NOSAMS and NSF grants OCE-0851015 & OCE-0928582 to VG.
    Description: 2013-04-03
    Keywords: Ganges ; Himalaya ; Mississippi ; POC ; Carbon cycle ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): D13303, doi:10.1029/2011JD017153.
    Description: Carbon isotopic signatures (δ13C, Δ14C) of aerosol particulate matter total organic carbon (TOC) and operationally defined organic carbon (OC) components were measured in samples from two background sites in the eastern U.S. TOC and water-soluble OC (WSOC) δ13C values (−27 to −24‰) indicated predominantly terrestrial C3 plant and fossil derived sources. Total solvent extracts (TSE) and their aliphatic, aromatic, and polar OC components were depleted in δ13C (−30 to −26‰) relative to TOC and WSOC. Δ14C signatures of aerosol TOC and TSE (−476 to +25‰) suggest variable fossil contributions (~5–50%) to these components. Aliphatic OC while comprising a small portion of the TOC (〈1%), was dominated by fossil-derived carbon (86 ± 3%), indicating its potential utility as a tracer for fossil aerosol OC inputs. In contrast, aromatic OC contributions (〈1.5%) contained approximately equal portions contemporary (52 ± 8%) and fossil (48 ± 8%) OC. The quantitatively significant polar OC fraction (6–25% of TOC) had fossil contributions (30 ± 12%) similar to TOC (26 ± 7%) and TSE (28 ± 9%). Thus, much of both of the fossil and contemporary OC is deduced to be oxidized, polar material. Aerosol WSOC consistently showed low fossil content (〈8%) relative to the TOC (5–50%) indicating that the majority of fossil OC in aerosol particulates is insoluble. Therefore, on the basis of solubility and polarity, aerosols are predicted to partition differently once deposited to watersheds, and these chemically distinct components are predicted to contribute in quantitatively and qualitatively different ways to watershed carbon biogeochemistry and cycling.
    Description: ASW was partially supported by a Graduate Fellowship from the Hudson River Foundation during the course of this study. Additional funding for this work came from a NOSAMS student internship award, a fellowship award from Sun Trust Bank administered through the VIMS Foundation, a student research grant from VIMS, and the following NSF awards: DEB Ecosystems grant DEB-0234533, Chemical Oceanography grant OCE-0327423, and Integrated Carbon Cycle Research Program grant EAR-0403949 to JEB; and Chemical Oceanography grant OCE-0727575 to RMD and JEB.
    Description: 2013-01-04
    Keywords: Aerosols ; Isotopes ; Organic carbon ; Particulate matter ; Radiocarbon ; Water soluble organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B10310, doi:10.1029/2004JB003066.
    Description: Multichannel seismic reflection data are used to infer crustal accretion processes along the intermediate spreading Galapagos Spreading Center. East of 92.5°W, we image a magma lens beneath the ridge axis that is relatively shallow (1.0–2.5 km below the seafloor) and narrow (∼0.5–1.5 km, cross-axis width). We also image a thin seismic layer 2A (0.24–0.42 km) that thickens away from the ridge axis by as much as 150%. West of 92.7°W, the magma lens is deeper (2.5–4.5 km) and wider (0.7–2.4 km), and layer 2A is thicker (0.36–0.66 km) and thickens off axis by 〈40%. The positive correlation between layer 2A thickness and magma lens depth supports the interpretation of layer 2A as the extrusive volcanic layer with thickness controlled by the pressure on the magma lens and its ability to push magma to the surface. Our findings also suggest that narrower magma lenses focus diking close the ridge axis such that lava flowing away from the ridge axis will blanket older flows and thicken the extrusive crust off axis. Flow of lava away from the ridge axis is probably promoted by the slope of the axial bathymetric high, which is largest east of 92.5°W. West of ∼94°W the “transitional” axial morphology lacks a prominent bathymetric high and layer 2A no longer thickens off axis. We detect no magma lens west of 94.7°W where a small axial valley appears. The above changes can be linked to the westward decrease in the magma and heat flux associated with the fading influence of the Galapagos hot spot on the Galapagos Spreading Center.
    Description: This project was funded by NSF-OCE- 0002189.
    Keywords: Layer 2A ; Mid-ocean ridges ; Shallow melt lens
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L18602, doi:10.1029/2012GL052974.
    Description: Marine dissolved organic carbon (DOC) is the largest reservoir of reduced carbon in seawater and persists up to 4,000–6,000 conventional radiocarbon (14C) years on average. Photochemical degradation has been suggested as a geochemical sink for these long-lived molecules, yet there have been no studies relating photochemical lability to the 14C-ages of surface DOC. We observed apparent second order (2°) kinetics with respect to DOC and a strong trend from Δ14C-enriched to depleted values during exhaustive photomineralization of surface marine DOC with high energy UV light. Geochemically, these results suggest that surface DOC is an isotopically-heterogeneous mixture of molecules for which photochemical lability and 14C ages are correlated. Photochemical mineralization may therefore be an important control on the persistence of 14C-depleted DOC in the ocean.
    Description: This study was supported under NSF grant OCE-0961980 to E. R. M. Druffel.
    Description: 2013-03-20
    Keywords: DOC ; Kinetics ; Photochemistry ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q04007, doi:10.1029/2011GC003990.
    Description: Here we demonstrate with a study of the Lucky Strike hydrothermal field that image mosaicing over large seafloor areas is feasible with new image processing techniques, and that repeated surveys allow temporal studies of active processes. Lucky Strike mosaics, generated from 〉56,000 images acquired in 1996, 2006, 2008 and 2009, reveal the distribution and types of diffuse outflow throughout the field, and their association with high-temperature vents. In detail, the zones of outflow are largely controlled by faults, and we suggest that the spatial clustering of active zones likely reflects the geometry of the underlying plumbing system. Imagery also provides constraints on temporal variability at two time-scales. First, based upon changes in individual outflow features identified in mosaics acquired in different years, we document a general decline of diffuse outflow throughout the vent field over time-scales up to 13 years. Second, the image mosaics reveal broad patches of seafloor that we interpret as fossil outflow zones, owing to their association with extinct chimneys and hydrothermal deposits. These areas encompass the entire region of present-day hydrothermal activity, suggesting that the plumbing system has persisted over long periods of time, loosely constrained to hundreds to thousands of years. The coupling of mosaic interpretation and available field measurements allow us to independently estimate the heat flux of the Lucky Strike system at ~200 to 1000 MW, with 75% to 〉90% of this flux taken up by diffuse hydrothermal outflow. Based on these heat flux estimates, we propose that the temporal decline of the system at short and long time scales may be explained by the progressive cooling of the AMC, without replenishment. The results at Lucky Strike demonstrate that repeated image surveys can be routinely performed to characterize and study the temporal variability of a broad range of vent sites hosting active processes (e.g., cold seeps, hydrothermal fields, gas outflows, etc.), allowing a better understanding of fluid flow dynamics from the sub-seafloor, and a quantification of fluxes.
    Description: This project was funded by CNRS/IFREMER through the 2006, 2008, 2009 and 2010 cruises within the MoMAR program (France), by ANR (France) Mothseim Project NT05-3 42213 to J. Escartín, and by grant CTM2010-15216/MAR from the Spanish Ministry of Science to R. Garcia and J. Escartín. T. Barreyre was supported by University Paris Diderot (Paris 7– France) and Institut de Physique du Globe de Paris (IPGP, France). E. Mittelstaedt was supported by the International Research Fellowship Program of the U.S. National Science Foundation (OISE-0757920).
    Description: 2012-10-19
    Keywords: Heat fluxes ; Hydrothermal activity ; Image mosaics ; Mid-ocean ridges ; Temporal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/jpeg
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...