ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (270)
  • Lunar and Planetary Science and Exploration  (195)
  • Chemical Engineering
  • 1995-1999  (515)
  • 1998  (515)
Collection
Publisher
Years
  • 1995-1999  (515)
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: The Grant was a three year grant funded under the Space Physics Supporting Research and Technology and Suborbital Program. Our objective was to develop automated techniques needed to unfold or "invert" global images of the magnetospheric ion populations obtained by the new magnetospheric imaging techniques (ENA, EUV) in anticipation of future missions such as the Magnetospheric Imager and, now, IMAGE. Our focus on the present three year grant is to determine the degree to which such images can quantitatively constrain the global electromagnetic properties of the magnetosphere. In a previous three year grant period we successfully automated a forward modeling inversion algorithm, demonstrated that these inversions are robust in the face of realistic instrumental considerations such as counting statistics and backgrounds, applied error analysis techniques to the extracted parameters using variational procedures, implemented very realistic magnetospheric test images to test the inversion algorithms using the Rice University Magnetospheric Specification Model, and began the process of generating parametric models with the flexibility to handle the realistic magnetospheric images (e.g. Roelof et al, 1992; 1993). Our plan for the present 3 year grant period was to complete the development of the inversion tools needed to handle realistic magnetospheric images, assess the degree to which global electrodynamics is quantitatively constrained by ENA images of the magnetosphere, and bring the inversion of EUV images up to the maturity that we will have achieved for the ENA imaging. Below the accomplishments of our three year effort are present followed by a list of our presentations and publications. The accomplishments of all three years are presented here, and thus some of these items appeared on interim progress reports.
    Keywords: Geophysics
    Type: NASA/CR-1998-208203 , NAS 1.26:208203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-24
    Description: Many properties of CO3 chondrites have been shown previously to have resulted from thermal metamorphism; petrologic subtypes 3.0-3.7 have been assigned to members of the group. Additional properties that correlate with the metamorphic sequence but seem to have resulted from hydrothermal alteration include the modal abundance of amoeboid olivine inclusions (AOI), chondrule size, the types of refractory inclusions and whole rock O isotopic composition. The percentage of rimmed AOI increases with petrologic subtype. The rims most likely formed during hydrothermal alteration. The previously reported correlation between AOI abundance and chondrite subtype is probably an artifact due to the difficulty in recognizing small unrimmed AOI in the least metamorphosed CO3 chondrites. Because large (〉=200 micron size) porphyritic chondrules have nearly the same mean size in all CO3 chondrites, it seems likely that the correlation between chondrule size and subtype is due to alteration of the smallest chondrules to the point of unrecognizability as complete objects in the more metamorphosed CO3 chondrites. The previously reported decrease in the proportion of melilite-rich refractory inclusions with increasing petrologic subtype may have resulted from more extensive hydrothermal alteration in CO3 .4-3.7 chondrites that converted primary melilite into Ca-pyroxene, andradite and nepheline. Alteration probably caused the preferential occurrence of O-16-poor oxygen isotopes in the more metamorphosed whole rock samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Meteoritics and Planetary Science; 33; 2; 385-391
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: This compact disk (CD) is part of the Clementine I high resolution (HiRes) camera lunar image mosaics developed by Malin Space Science Systems (MSSS). These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. The geometric control is provided by the U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD are compiled from polar data (latitudes greater than 80 degrees), and are presented in the stereographic projection at a scale of 30 m/pixel at the pole, a resolution 5 times greater than that (150 m/pixel) of the corresponding UV/Vis polar basemap. This 5:1 scale ratio is in keeping with the sub-polar mosaic, in which the HiRes and UV/Vis mosaics had scales of 20 m/pixel and 100 m/pixel, respectively. The equal-area property of the stereographic projection made this preferable for the HiRes polar mosaic rather than the basemap's orthographic projection. Thus, a necessary first step in constructing the mosaic was the reprojection of the UV/Vis basemap to the stereographic projection. The HiRes polar data can be naturally grouped according to the orbital periapsis, which was in the south during the first half of the mapping mission and in the north during the second half. Images in each group have generally uniform intrinsic resolution, illumination, exposure and gain. Rather than mingle data from the two periapsis epochs, separate mosaics are provided for each, a total of 4 polar mosaics. The mosaics are divided into 100 square tiles of 2250 pixels (approximately 2.2 deg near the pole) on a side. Not all squares of this grid contain HiRes mosaic data, some inevitably since a square is not a perfect representation of a (latitude) circle, others due to the lack of HiRes data. This CD also contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: On May 23, 1995, the Comprehensive Plasma Instrumentation (CPI) onboard the Geotail spacecraft observed a complex and structured ion distribution function near the magnetotail midplane at x approximately -10 R(sub E). On the same day, the Wind spacecraft observed a very high density (approximately 40/cubic cm) solar wind and an interplanetary magnetic field (IMF) that was predominantly northward but had several southward turnings. We have inferred the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time using time-dependent electric and magnetic fields obtained from a global MHD (magnetohydrodynamic) simulation. Wind data were used as input for the MHD model. We found that three sources contributed to this distribution: the ionosphere, the plasma mantle which had near-Earth and distant tail components, and the low latitude boundary layer (LLBL). Moreover, distinct structures in the low energy part of the distribution function were found to be associated with individual sources. Structures near 0 deg pitch angle were made up of either ionospheric or plasma mantle ions, while structures near 90 deg pitch angle were dominated by ions from the LLBL source. Particles that underwent nonadiabatic acceleration were numerous in the higher energy part of the ion distribution function, whereas ionospheric and LLBL ions were mostly adiabatic. A large proportion of the near-Earth mantle ions underwent adiabatic acceleration, while most of the distant mantle ions experienced nonadiabatic acceleration.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Ion density and velocity measurements from the Dynamics Explorer 2 (DE 2) spacecraft are used to obtain the average magnetic local time versus invariant latitude distribution of irregularities in the high-latitude F region ionosphere. To study the small-scale structure and its relationship to background conditions in the ionosphere, we have formed a reduced database using 2-s (approx. = 16 km) segments of the ion density and velocity data. The background gradients associated with each 2-s segment and the spectral characteristics, such as power at 6 Hz (approx. = 1.3 km) and spectral index, are among the reduced parameters used in this study. The relationship between the observed plasma structure and its motion is complex and dependent on the externally applied fields as well as locally generated plasma structure. The evolution of plasma structures also depends critically on the conductivity of the underlying ionosphere. Observations indicate an enhancement of irregularity amplitudes in two spatially isolated regions in both the ion density and the velocity. Convective properties seem to play a more important role in winter hemisphere where smaller-scale structures are maintained outside the source regions. (Delta)V irregularity amplitudes are enhanced in the cusp and the polar cap during northward interplanetary magnetic field regardless of season. The power in (Delta)V is usually higher than that associated with local polarization electric fields, suggesting that the observed structure in (Delta)N/N is strongly influenced by (Delta)V structure applied to large density gradients.
    Keywords: Geophysics
    Type: Paper-97JA03237 , Journal of Geophysical Research (ISSN 0148-0227); 103; A4; 6955-6968
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: Analysis of meteorological, chemical and microphysical data from the airborne SUCCESS (SUbsonic aircraft Contrail and Cloud Effects Special Study) mission is reported. Careful analysis of the complex DC-8 flight pattern of May 2, 1996 reveals 19 linear flight segments within six main geographical areas, which we have analyzed. Significant mountain wave activity is revealed in the data from the MMS (Meteorology Measurement System) and MTP (Microwave Temperature Profiler) instruments on the DC-8, which resembles previous observations of mountain wave structures near Boulder, Colorado. Strong mountain-wave-induced upwelling downwind of the Rockies is noted. Turbulence is also noted in regions of the mountain wave consistent with overturning near the tropopause. Zonal winds recorded on the ER-2 are shown to be consistent with mountain wave breaking at or near critical levels in the stratosphere, consistent with the strong turbulence reported by the pilot during the ER-2 flight. These observations have been supported with spectral analyses and modeling studies. 'Postcasts' of mountain wave activity on May 2, 1996 using the Naval Research Laboratory Mountain Wave Forecast Model predicts both strong mountain wave activity near the tropopause and strong mountain-wave-induced turbulence in the stratosphere.
    Keywords: Geophysics
    Type: NASA/CR-2000-209887 , NAS 1.26:209887
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: This compact disk (CD) is part of the Clementine I high resolution (HiRes) camera lunar image mosaics developed by Malin Space Science Systems (MSSS). These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. The geometric control is provided by the U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD are compiled from polar data (latitudes greater than 80 degrees), and are presented in the stereographic projection at a scale of 30 m/pixel at the pole, a resolution 5 times greater than that (150 m/pixel) of the corresponding UV/Vis polar basemap. This 5:1 scale ratio is in keeping with the sub-polar mosaic, in which the HiRes and UV/Vis mosaics had scales of 20 m/pixel and 100 m/pixel, respectively. The equal-area property of the stereographic projection made this preferable for the HiRes polar mosaic rather than the basemap's orthographic projection. Thus, a necessary first step in constructing the mosaic was the reprojection of the UV/Vis basemap to the stereographic projection. The HiRes polar data can be naturally grouped according to the orbital periapsis, which was in the south during the first half of the mapping mission and in the north during the second half. Images in each group have generally uniform intrinsic resolution, illumination, exposure and gain. Rather than mingle data from the two periapsis epochs, separate mosaics are provided for each, a total of 4 polar mosaics. The mosaics are divided into 100 square tiles of 2250 pixels (approximately 2.2 deg near the pole) on a side. Not all squares of this grid contain HiRes mosaic data, some inevitably since a square is not a perfect representation of a (latitude) circle, others due to the lack of HiRes data. This CD also contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...