ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (61)
  • American Association for the Advancement of Science (AAAS)  (61)
  • Elsevier
  • Springer
  • 2020-2024
  • 1995-1999  (61)
  • 1997  (61)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (61)
  • Elsevier
  • Springer
Years
  • 2020-2024
  • 1995-1999  (61)
Year
  • 1
    Publication Date: 1997-12-31
    Description: The nuclear factor of activated T cells (NFAT) group of transcription factors is retained in the cytoplasm of quiescent cells. NFAT activation is mediated in part by induced nuclear import. This process requires calcium-dependent dephosphorylation of NFAT caused by the phosphatase calcineurin. The c-Jun amino-terminal kinase (JNK) phosphorylates NFAT4 on two sites. Mutational removal of the JNK phosphorylation sites caused constitutive nuclear localization of NFAT4. In contrast, JNK activation in calcineurin-stimulated cells caused nuclear exclusion of NFAT4. These findings show that the nuclear accumulation of NFAT4 promoted by calcineurin is opposed by the JNK signal transduction pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow, C W -- Rincon, M -- Cavanagh, J -- Dickens, M -- Davis, R J -- CA58396/CA/NCI NIH HHS/ -- CA65831/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1638-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; COS Cells ; Calcineurin/metabolism ; Calcineurin Inhibitors ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclosporine/pharmacology ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Mutation ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphorylation ; Protein Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-23
    Description: During translation errors of aminoacylation are corrected in editing reactions which ensure that an amino acid is stably attached to its corresponding transfer RNA (tRNA). Previous studies have not shown whether the tRNA nucleotides needed for effecting translational editing are the same as or distinct from those required for aminoacylation, but several considerations have suggested that they are the same. Here, designed tRNAs that are highly active for aminoacylation but are not active in translational editing are presented. The editing reaction can be controlled by manipulation of nucleotides at the corner of the L-shaped tRNA. In contrast, these manipulations do not affect aminoacylation. These results demonstrate the segregation of nucleotide determinants for the editing and aminoacylation functions of tRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hale, S P -- Auld, D S -- Schmidt, E -- Schimmel, P -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 23;276(5316):1250-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157882" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Binding Sites ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Editing ; RNA, Transfer/*metabolism ; RNA, Transfer, Ile/chemistry/metabolism ; RNA, Transfer, Val/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-04-18
    Description: The crystal structure of the adenine nucleotide exchange factor GrpE in complex with the adenosine triphosphatase (ATPase) domain of Escherichia coli DnaK [heat shock protein 70 (Hsp70)] was determined at 2.8 angstrom resolution. A dimer of GrpE binds asymmetrically to a single molecule of DnaK. The structure of the nucleotide-free ATPase domain in complex with GrpE resembles closely that of the nucleotide-bound mammalian Hsp70 homolog, except for an outward rotation of one of the subdomains of the protein. This conformational change is not consistent with tight nucleotide binding. Two long alpha helices extend away from the GrpE dimer and suggest a role for GrpE in peptide release from DnaK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, C J -- Hayer-Hartl, M -- Di Liberto, M -- Hartl, F -- Kuriyan, J -- New York, N.Y. -- Science. 1997 Apr 18;276(5311):431-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratories of Molecular Biophysics and Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9103205" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphatases/*chemistry/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Escherichia coli Proteins ; HSP70 Heat-Shock Proteins/*chemistry/metabolism ; Heat-Shock Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Chaperones/*chemistry/metabolism ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-11-21
    Description: Many neuropeptides and peptide hormones require amidation at the carboxyl terminus for activity. Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the amidation of these diverse physiological regulators. The amino-terminal domain of the bifunctional PAM protein is a peptidylglycine alpha-hydroxylating monooxygenase (PHM) with two coppers that cycle through cupric and cuprous oxidation states. The anomalous signal of the endogenous coppers was used to determine the structure of the catalytic core of oxidized rat PHM with and without bound peptide substrate. These structures strongly suggest that the PHM reaction proceeds via activation of substrate by a copper-bound oxygen species. The mechanistic and structural insight gained from the PHM structures can be directly extended to dopamine beta-monooxygenase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prigge, S T -- Kolhekar, A S -- Eipper, B A -- Mains, R E -- Amzel, L M -- DK32949/DK/NIDDK NIH HHS/ -- GM44692/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1300-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Catalysis ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Dipeptides/metabolism ; Dopamine beta-Hydroxylase/chemistry/metabolism ; Electrons ; Hydroxylation ; Ligands ; Mixed Function Oxygenases/*chemistry/metabolism ; Models, Molecular ; *Multienzyme Complexes ; Oxidation-Reduction ; Oxygen/metabolism ; Peptides/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-07-18
    Description: A genetic block was introduced in the first condensation step of the polyketide biosynthetic pathway that leads to the formation of 6-deoxyerythronolide B (6-dEB), the macrocyclic precursor of erythromycin. Exogenous addition of designed synthetic molecules to small-scale cultures of this null mutant resulted in highly selective multimilligram production of unnatural polyketides, including aromatic and ring-expanded variants of 6-dEB. Unexpected incorporation patterns were observed, illustrating the catalytic versatility of modular polyketide synthases. Further processing of some of these scaffolds by postpolyketide enzymes of the erythromycin pathway resulted in the generation of novel antibacterials with in vitro potency comparable to that of their natural counterparts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobsen, J R -- Hutchinson, C R -- Cane, D E -- Khosla, C -- CA66736/CA/NCI NIH HHS/ -- GM22172/GM/NIGMS NIH HHS/ -- GM31925/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jul 18;277(5324):367-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9219693" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Bacillus cereus/drug effects/growth & development ; Binding Sites ; Catalysis ; Cyclization ; Erythromycin/*analogs & derivatives/biosynthesis/pharmacology ; Microbial Sensitivity Tests ; Multienzyme Complexes/*genetics/*metabolism ; *Mutagenesis, Site-Directed ; Saccharopolyspora/genetics/metabolism ; Streptomyces/enzymology/genetics/*metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-02-28
    Description: The small guanosine triphosphatase (GTPase) Rho is implicated in the formation of stress fibers and focal adhesions in fibroblasts stimulated by extracellular signals such as lysophosphatidic acid (LPA). Rho-kinase is activated by Rho and may mediate some biological effects of Rho. Microinjection of the catalytic domain of Rho-kinase into serum-starved Swiss 3T3 cells induced the formation of stress fibers and focal adhesions, whereas microinjection of the inactive catalytic domain, the Rho-binding domain, or the pleckstrin-homology domain inhibited the LPA-induced formation of stress fibers and focal adhesions. Thus, Rho-kinase appears to mediate signals from Rho and to induce the formation of stress fibers and focal adhesions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amano, M -- Chihara, K -- Kimura, K -- Fukata, Y -- Nakamura, N -- Matsuura, Y -- Kaibuchi, K -- New York, N.Y. -- Science. 1997 Feb 28;275(5304):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-01, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9036856" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/*metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; *Cell Adhesion ; Cell Line ; DNA, Complementary/genetics ; Enzyme Inhibitors/pharmacology ; GTP Phosphohydrolases/metabolism ; Intracellular Signaling Peptides and Proteins ; Lysophospholipids/pharmacology ; Mice ; Mutation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Staurosporine/pharmacology ; rho-Associated Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-07-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roush, W -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):31-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9229767" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism/*pathology ; Amyloid beta-Peptides/immunology ; Antibodies/immunology ; Binding Sites ; Brain/*pathology ; Brain Chemistry ; Humans ; Phosphates/metabolism ; tau Proteins/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-06-13
    Description: The crystal structures of a germline antibody Fab fragment and its complex with hapten have been solved at 2.1 A resolution. These structures are compared with the corresponding crystal structures of the affinity-matured antibody, 48G7, which has a 30,000 times higher affinity for hapten as a result of nine replacement somatic mutations. Significant changes in the configuration of the combining site occur upon binding of hapten to the germline antibody, whereas hapten binds to the mature antibody by a lock-and-key fit mechanism. The reorganization of the combining site that was nucleated by hapten binding is further optimized by somatic mutations that occur up to 15 from bound hapten. These results suggest that the binding potential of the primary antibody repertoire may be significantly expanded by the ability of germline antibodies to adopt more than one combining-site configuration, with both antigen binding and somatic mutation stabilizing the configuration with optimal hapten complementarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wedemayer, G J -- Patten, P A -- Wang, L H -- Schultz, P G -- Stevens, R C -- R01 AI39089/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1665-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180069" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/genetics/immunology ; Antibody Affinity ; Antibody Diversity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Binding Sites ; *Binding Sites, Antibody ; Crystallography, X-Ray ; *Evolution, Molecular ; Haptens/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/immunology ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-06-06
    Description: Apoptosis of Jurkat T cells induced the caspase-mediated proteolytic cleavage of p21-activated kinase 2 (PAK2). Cleavage occurred between the amino-terminal regulatory domain and the carboxyl-terminal catalytic domain, which generated a constitutively active PAK2 fragment. Stable Jurkat cell lines that expressed a dominant-negative PAK mutant were resistant to the Fas-induced formation of apoptotic bodies, but had an enhanced externalization of phosphatidylserine at the cell surface. Thus, proteolytic activation of PAK2 represents a guanosine triphosphatase-independent mechanism of PAK regulation that allows PAK2 to regulate morphological changes that are seen in apoptotic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rudel, T -- Bokoch, G M -- GM39434/GM/NIGMS NIH HHS/ -- HL48008/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 6;276(5318):1571-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9171063" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/pharmacology ; *Apoptosis ; Binding Sites ; Caspase 3 ; *Caspases ; Cell Membrane/*metabolism ; Cysteine Endopeptidases/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Enzyme Activation ; Fas Ligand Protein ; Humans ; Jurkat Cells ; Membrane Glycoproteins/metabolism ; Phosphatidylserines/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Proteins/metabolism ; T-Lymphocytes/*cytology/enzymology ; p21-Activated Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-08-15
    Description: Catalytic protein subunits of telomerase from the ciliate Euplotes aediculatus and the yeast Saccharomyces cerevisiae contain reverse transcriptase motifs. Here the homologous genes from the fission yeast Schizosaccharomyces pombe and human are identified. Disruption of the S. pombe gene resulted in telomere shortening and senescence, and expression of mRNA from the human gene correlated with telomerase activity in cell lines. Sequence comparisons placed the telomerase proteins in the reverse transcriptase family but revealed hallmarks that distinguish them from retroviral and retrotransposon relatives. Thus, the proposed telomerase catalytic subunits are phylogenetically conserved and represent a deep branch in the evolution of reverse transcriptases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakamura, T M -- Morin, G B -- Chapman, K B -- Weinrich, S L -- Andrews, W H -- Lingner, J -- Harley, C B -- Cech, T R -- GM28039/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):955-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252327" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cell Line ; DNA-Binding Proteins ; Evolution, Molecular ; Genes, Fungal ; Humans ; Introns ; Molecular Sequence Data ; Phylogeny ; Proteins/*chemistry/genetics/metabolism ; *Rna ; RNA, Messenger/genetics/metabolism ; RNA-Directed DNA Polymerase/chemistry ; Retroelements ; Schizosaccharomyces/*enzymology/genetics/growth & development ; Schizosaccharomyces pombe Proteins ; Sequence Alignment ; Telomerase/*chemistry/genetics/metabolism ; Telomere/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...