ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (228,584)
  • Springer  (147,632)
  • 2015-2019  (236,867)
  • 1995-1999  (139,351)
  • 1950-1954
  • 2017  (236,867)
  • 1997  (139,351)
Collection
Years
Year
  • 11
    Publication Date: 2016-11-22
    Description: The hypothesis of this work was that exposure to diverse abiotic factors in two sites with different sediment and iron input (Peñón de Pesca: low impact; Island D: high impact, both areas in Potter Cove, King George Island, Antarctica) affects the physiological and oxidative profile of Gigartina skottsbergii and Himantothallus grandifolius. Daily metabolic carbon balance was significantly lower in both macroalgae from Island D compared to Peñón de Pesca. Lipid radical (LRradical dot) content was significantly higher in G. skottsbergii collected from Island D compared to Peñón de Pesca. In contrast, H. grandifolius showed significantly lower values in Island D compared to Peñón de Pesca. The β-carotene (β-C) content was significantly lower in G. skottsbergii from Island D compared to Peñón de Pesca, and the ratio LRradical dot/β-C showed a 6-fold increase in Island D samples compared to Peñón de Pesca. On the other hand, β-C content in H. grandifolius showed no significant differences between both areas. The LRradical dot/β-C content ratio in this alga was significantly lower (26%) in Island D as compared to Peñón de Pesca. Total iron content was significantly higher in both macroalgae from Island D compared to samples from Peñón de Pesca. Results with G. skottsbergii suggested changes in the oxidative cellular balance, probably related to the higher environmental iron in Island D as compared to Peñón de Pesca. The species H. grandifolius seems to be better adapted to the environmental conditions especially through a higher antioxidant capacity to cope with oxidative stress.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Faszination Meeresforschung, Book, Berlin, Springer, 573 p., pp. 455-460, ISBN: 978-3-662-49713-5
    Publication Date: 2017-01-20
    Description: Fast die Hälfte der gesamten weltweit durch Marikultur erzeugten Biomasse sind Makroalgen. Die unterschiedlich gelierenden Bestandteile ihrer Zellwände (Hydrokolloide) werden industriell genutzt. Offensichtlicher für den Verbraucher ist die Verwendung als Lebensmittel, z.B., die Rotalge Pyropia als Nori für Sushi. Es wird erklärt, warum diese Produkte teuer sind.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Earth and Planetary Science Letters, Elsevier, 457, pp. 412-422, ISSN: 0012821X
    Publication Date: 2017-01-02
    Description: The Himalaya–Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O(δ18Op) over the Himalaya–Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼2.0–4.0◦C lower across the Himalaya and Tibet, and 〉5.0◦C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200–600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4h/km larger during the MH and 0.2h/km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70◦E–110◦E and 10◦N–30◦N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of the Indian monsoon.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Faszination Meeresforschung-Ein ökologisches Lesebuch, Faszination Meeresforschung-Ein ökologisches Lesebuch, Berlin, Springer, 573 p., pp. 385-397, ISBN: 978-3-662-49713-5
    Publication Date: 2018-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Faszination Meeresforschung, ein ökologisches Lesebuch, Faszination Meeresforschung, Springer, pp. 261-272, ISBN: 978-3-662-49713-5
    Publication Date: 2018-02-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-01-20
    Description: Although the Arctic covers 6% of our planet’s surface and plays a key role in the Earth’s climate it remains one of the least explored ecosystems. The global change induced decline of sea ice has led to increasing anthropogenic presence in the Arctic Ocean. Exploitation of its resources is already underway, and Arctic waters are likely important future shipping lanes as indicated by already increasing numbers of fishing vessels, cruise liners and hydrocarbon prospecting in the area over the past decade. Global estimates of plastic entering the oceans currently exceed results based on empirical evidence by up to three orders of magnitude highlighting that we have not yet identified some of the major sinks of plastic in our oceans. Fragmentation into microplastics could explain part of the discrepancy. Indeed, microplastics were identified from numerous marine ecosystems globally, including the Arctic. Here, we analysed horizons of ice cores from the western and eastern Fram Strait by focal plane array based micro-Fourier transform infrared spectroscopy to assess if sea ice is a sink of microplastic. Ice cores were taken from land-locked and drifting sea ice to distinguish between local entrainment of microplastics vs long-distance transport. Mean concentrations of 2 x 106 particles m-3 in pack ice and 6 x 105 particles m-3 in land-locked ice were detected (numbers of fibers will soon be added). Eleven different polymer types were identified; polyethylene (PE) was the most abundant one. Preliminary results from four further ice cores from the central Arctic range in a similar order but the microplastics composition was very different. Calculation of drift trajectories by back-tracking of the ice floes sampled indicates multiple source areas, which explains the differences in the microplastic composition. Preliminary analysis of snow samples taken from ice floes in the Fram Strait showed numerous fibers of yet unknown but most likely anthropogenic origin indicating atmospheric fallout as a possible pathway. Our results exceed concentrations from the North Pacific by several orders of magnitudes. This can be explained partly by the process of ice formation, during which (organic) particles tend to concentrate by 1-2 orders of magnitude compared with ambient seawater. However, the magnitude of the difference indicates that Arctic sea ice is a temporal sink for microplastics. Increasing quantities of small plastic litter items on the seafloor nearby, which is located in the marginal ice zone corroborate the notion that melting sea ice releases entrained plastic particles and that sea ice acts as a vector of transport both horizontally and vertically to underlying ecosystem compartments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Faszination Meeresforschung - Ein ökologisches Lesebuch, 2. Auflage, Berlin, Springer, 573 p., pp. 103-112, ISBN: 978-3-662-49713-5
    Publication Date: 2017-01-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3SoftwareX, Elsevier, 6, pp. 69-80, ISSN: 2352-7110
    Publication Date: 2017-03-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Reference Module in Earth Systems and Environmental Sciences, Elsevier
    Publication Date: 2017-02-14
    Description: Vast quantities of plastics are accumulating in the oceans. At sea, plastics interact with marine biota often with deleterious consequences for organisms and habitats. As users of marine food resources and ecosystem services humans are also affected by marine plastic litter. Economic, social and health implications necessitate decisive action to manage this growing environmental problem at a global scale. Accordingly, legislative and technological instruments have been implemented to reduce the amounts of marine plastic debris. Promising strategies to reduce the human plastic footprint in the oceans must involve the minimization of plastic discharges into the marine environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...