ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (146)
  • Signal Transduction  (146)
  • American Association for the Advancement of Science (AAAS)  (146)
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
  • 2010-2014  (64)
  • 2000-2004
  • 1995-1999  (82)
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • 2011  (64)
  • 1997  (82)
  • Natural Sciences in General  (146)
  • Geosciences
Collection
  • Articles  (146)
Publisher
  • American Association for the Advancement of Science (AAAS)  (146)
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
  • Nature Publishing Group (NPG)  (26)
Years
  • 2010-2014  (64)
  • 2000-2004
  • 1995-1999  (82)
  • 1955-1959
  • 1935-1939
  • +
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hemmings, B A -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute, CH-4002 Basel, Switzerland. hemmings@fmi.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9254423" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Enzyme Activation ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-akt ; Second Messenger Systems ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-11-14
    Description: The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartwell, L H -- Szankasi, P -- Roberts, C J -- Murray, A W -- Friend, S H -- N01-BC65017/BC/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 7;278(5340):1064-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Project, Molecular Pharmacology Department, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9353181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antineoplastic Agents/pharmacology/therapeutic use ; *Drug Design ; *Drug Screening Assays, Antitumor ; Humans ; Mutation ; Neoplasms/*drug therapy/genetics ; Signal Transduction ; Yeasts/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-13
    Description: Exposure of the yeast Saccharomyces cerevisiae to high extracellular osmolarity induces the Sln1p-Ypd1p-Ssk1p two-component osmosensor to activate a mitogen-activated protein (MAP) kinase cascade composed of the Ssk2p and Ssk22p MAP kinase kinase kinases (MAPKKKs), the Pbs2p MAPKK, and the Hog1p MAPK. A second osmosensor, Sho1p, also activated Pbs2p and Hog1p, but did so through the Ste11p MAPKKK. Although Ste11p also participates in the mating pheromone-responsive MAPK cascade, there was no detectable cross talk between these two pathways. The MAPKK Pbs2p bound to the Sho1p osmosensor, the MAPKKK Ste11p, and the MAPK Hog1p. Thus, Pbs2p may serve as a scaffold protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Posas, F -- Saito, H -- GM50909/GM/NIGMS NIH HHS/ -- GM53415/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180081" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Enzyme Activation ; Genes, Fungal ; Genetic Complementation Test ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Mutation ; Osmolar Concentration ; Osmotic Pressure ; Peptides/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; *Saccharomyces cerevisiae Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-05-02
    Description: The neurofibromatosis type 1 (NF1) tumor suppressor protein is thought to restrict cell proliferation by functioning as a Ras-specific guanosine triphosphatase-activating protein. However, Drosophila homozygous for null mutations of an NF1 homolog showed no obvious signs of perturbed Ras1-mediated signaling. Loss of NF1 resulted in a reduction in size of larvae, pupae, and adults. This size defect was not modified by manipulating Ras1 signaling but was restored by expression of activated adenosine 3', 5'-monophosphate-dependent protein kinase (PKA). Thus, NF1 and PKA appear to interact in a pathway that controls the overall growth of Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉The, I -- Hannigan, G E -- Cowley, G S -- Reginald, S -- Zhong, Y -- Gusella, J F -- Hariharan, I K -- Bernards, A -- NS22229/NS/NINDS NIH HHS/ -- NS34779/NS/NINDS NIH HHS/ -- NS36084/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 May 2;276(5313):791-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center and Harvard Medical School Building 149, 13th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Count ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/genetics/*metabolism ; Drosophila/cytology/*genetics/growth & development/metabolism ; *Drosophila Proteins ; GTP Phosphohydrolases/metabolism ; Genes, Insect ; Insect Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; *Nerve Tissue Proteins ; Neurofibromin 1 ; Phenotype ; Proteins/chemistry/genetics ; Recombinant Fusion Proteins/pharmacology ; Signal Transduction ; *ras GTPase-Activating Proteins ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-07-11
    Description: Adenosine 3',5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) are regulators of development in many organisms. Dictyostelium uses cAMP as an extracellular chemoattractant and as an intracellular signal for differentiation. Cells that are mutant in adenylyl cyclase do not develop. Moderate expression of the catalytic subunit of PKA in adenylyl cyclase-null cells led to near-normal development without detectable accumulation of cAMP. These results suggest that all intracellular cAMP signaling is effected through PKA and that signals other than extracellular cAMP coordinate morphogenesis in Dictyostelium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, B -- Kuspa, A -- R01 GM052359/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):251-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211856" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Animals ; Cloning, Molecular ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Dictyostelium/genetics/*growth & development/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Genes, Protozoan ; Morphogenesis ; Signal Transduction ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-05-02
    Description: Circadian rhythmicity is universally associated with the ability to perceive light, and the oscillators ("clocks") giving rise to these rhythms, which are feedback loops based on transcription and translation, are reset by light. Although such loops must contain elements of positive and negative regulation, the clock genes analyzed to date-frq in Neurospora and per and tim in Drosophila-are associated only with negative feedback and their biochemical functions are largely inferred. The white collar-1 and white collar-2 genes, both global regulators of photoresponses in Neurospora, encode DNA binding proteins that contain PAS domains and are believed to act as transcriptional activators. Data shown here suggest that wc-1 is a clock-associated gene and wc-2 is a clock component; both play essential roles in the assembly or operation of the Neurospora circadian oscillator. Thus DNA binding and transcriptional activation can now be associated with a clock gene that may provide a positive element in the feedback loop. In addition, similarities between the PAS-domain regions of molecules involved in light perception and circadian rhythmicity in several organisms suggest an evolutionary link between ancient photoreceptor proteins and more modern proteins required for circadian oscillation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crosthwaite, S K -- Dunlap, J C -- Loros, J J -- GM 34985/GM/NIGMS NIH HHS/ -- MH01186/MH/NIMH NIH HHS/ -- MH44651/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1997 May 2;276(5313):763-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755-3844, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115195" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Clocks/physiology ; Biological Evolution ; Circadian Rhythm/*physiology ; DNA, Fungal/metabolism ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Feedback ; Fungal Proteins/genetics ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Light ; Molecular Sequence Data ; Neurospora crassa/genetics/*physiology ; Phytochrome/metabolism ; Signal Transduction ; Temperature ; Transcription Factors/chemistry/genetics/*physiology ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-17
    Description: The proto-oncogene-encoded transcription factor c-Jun activates genes in response to a number of inducers that act through mitogen-activated protein kinase (MAPK) signal transduction pathways. The activation of c-Jun after phosphorylation by MAPK is accompanied by a reduction in c-Jun ubiquitination and consequent stabilization of the protein. These results illustrate the relevance of regulated protein degradation in the signal-dependent control of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Musti, A M -- Treier, M -- Bohmann, D -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):400-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8994040" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Cycle Proteins/metabolism ; GTP-Binding Proteins/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Phosphorylation ; Proto-Oncogene Proteins c-jun/*metabolism ; Signal Transduction ; Transfection ; Ubiquitins/*metabolism ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: Interest in bacterial pathogenesis has recently increased because of antibiotic resistance, the emergence of new pathogens and the resurgence of old ones, and the lack of effective therapeutics. The molecular and cellular mechanisms of microbial pathogenesis are currently being defined, with precise knowledge of both the common strategies used by multiple pathogenic bacteria and the unique tactics evolved by individual species to help establish infection. What is emerging is a new appreciation of how bacterial pathogens interact with host cells. Many host cell functions, including signal transduction pathways, cytoskeletal rearrangements, and vacuolar trafficking, are exploited, and these are the focus of this review. A bonus of this work is that bacterial virulence factors are providing new tools to study various aspects of mammalian cell functions, in addition to mechanisms of bacterial disease. Together these developments may lead to new therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finlay, B B -- Cossart, P -- New York, N.Y. -- Science. 1997 May 2;276(5313):718-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada, V6T-1Z3. bfinlay@unixg.ubc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Bacteria/genetics/*pathogenicity ; *Bacterial Adhesion ; Bacterial Infections/*microbiology ; Bacterial Physiological Phenomena ; Bacterial Toxins/toxicity ; Cells, Cultured ; Cytoskeleton/physiology ; Epithelial Cells ; Epithelium/microbiology ; Humans ; Phagocytosis ; Signal Transduction ; Vacuoles/microbiology ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-09-05
    Description: In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Wong, C -- Thoma, R S -- Richman, R -- Wu, Z -- Piwnica-Worms, H -- Elledge, S J -- GM17763/GM/NIGMS NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1497-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278511" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Cytoskeletal Proteins ; *DNA Damage ; *F-Box Proteins ; G2 Phase ; HeLa Cells ; Humans ; Mice ; *Mitosis ; Molecular Sequence Data ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Transfection ; *Tyrosine 3-Monooxygenase ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...