ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 384 (6608). p. 421.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 382 (6589). pp. 344-346.
    Publication Date: 2017-02-27
    Description: The conventional model whereby plume volcanism forms linear age-progressive volcanic chains, with the youngest activity occurring nearest a spreading axis (at a 'hotspot'), has been challenged for the Easter seamount chain1–4. Whereas early work suggested the existence of a linear melting anomaly (a 'hotline')1,2, more recent studies3,4 have proposed a hotspot near Salas y Gomez island, connected with the Easter microplate spreading system by an ~800-km-long, volcanically active plume channel. Here we use geochemical, geological and geochronological data to argue that the hotspot lies close to Easter Island. Moreover, new isotopic data for lavas from the seamount chain provide evidence for bidirectional flow between the spreading axis and the plume, thus supporting geophysical and fluid-dynamical models of mantle flow in a plume/spreading axis system5–7. Material balance and flux considerations show the Easter plume to be weak and cool compared with those beneath larger features such as Iceland, Hawaii and the Galápagos islands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-27
    Description: A knowledge of past changes in the biological productivity of the oceans is important for understanding the interactions between carbon cycling and climate. Phytoplankton productivity in today's oceans can be estimated from the concentrations of chlorophyll in sea water1, but chlorophyll is not preserved in the sediments. Existing proxies for past algal productivity do not represent total productivity; for example, biogenic opal2 reflects the contribution of only part of the phytoplankton community, and the organic carbon record can be subject to contamination from terrestrial inputs2,3. Although chlorins, the pigment-transformation products of chlorophyll, are widespread in Quaternary marine sediments, their potential as proxy measures of past variations in primary productivity has not been convincingly demonstrated. Here we report a high-resolution molecular stratigraphic record of chlorin concentrations over the past 350,000 years in a sediment core from the subtropical Atlantic continental margin. Maxima in the chlorin accumulation rate coincide with significant peaks in the accumulation rates of biogenic opal (at the end of glacial terminations) and organic carbon (between terminations). These results suggest that chlorins, unlike other proxies, can serve as a measure of total primary productivity variations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 382 . pp. 802-805.
    Publication Date: 2017-02-27
    Description: A fundamental issue in marine science is the identification of the factors controlling biological uptake of CO2, in high-nitrate, low-chlorophyll regions. A recent in situ iron fertilization experiment demonstrated that iron limitation is responsible for low phytoplankton stocks in the equatorial Pacific4. Here we show that flavodoxin, a biochemical marker of iron limitation, can be used to map the degree of iron stress in natural populations. Flavodoxin assays along a 900-km east-west transect in the northeastern subarctic Pacific revealed a pronounced increase in iron stress in the region west of the 135° W meridian. Addition of dissolved iron alleviated this stress. Immunostaining of single cells from the most western station showed that flavodoxin is present specifically within the chloroplasts of diatoms. Our approach provides a rapid means of defining the extent of iron stress in the ocean5 and supports the hypothesis that diatoms are iron stressed in the northeast Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...