ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (70)
  • Binding Sites  (51)
  • American Association for the Advancement of Science (AAAS)  (116)
  • American Meteorological Society
  • 1995-1999  (116)
  • 1996  (116)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (116)
  • American Meteorological Society
Years
  • 1995-1999  (116)
Year
  • 101
    Publication Date: 1996-07-12
    Description: The mechanisms underlying the profound suppression of cell-mediated immunity (CMI) accompanying measles are unclear. Interleukin-12 (IL-12), derived principally from monocytes and macrophages, is critical for the generation of CMI. Measles virus (MV) infection of primary human monocytes specifically down-regulated IL-12 production. Cross-linking of CD46, a complement regulatory protein that is the cellular receptor for MV, with antibody or with the complement activation product C3b similarly inhibited monocyte IL-12 production, providing a plausible mechanism for MV-induced immunosuppression. CD46 provides a regulatory link between the complement system and cellular immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karp, C L -- Wysocka, M -- Wahl, L M -- Ahearn, J M -- Cuomo, P J -- Sherry, B -- Trinchieri, G -- Griffin, D E -- AI01223/AI/NIAID NIH HHS/ -- AI23047/AI/NIAID NIH HHS/ -- AI35149/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662504" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD/immunology/*physiology ; Antigens, CD46 ; Binding Sites ; Cells, Cultured ; Chemokines/biosynthesis ; Complement C3b/immunology/physiology ; Cytokines/biosynthesis ; Down-Regulation ; Humans ; *Immune Tolerance ; Interleukin-10/physiology ; Interleukin-12/*biosynthesis ; Measles virus/*immunology/metabolism ; Membrane Glycoproteins/immunology/*physiology ; Monocytes/*immunology/*virology ; Receptors, Virus/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 1996-05-17
    Description: The adenomatous polyposis coli gene (APC) is mutated in most colon cancers. The APC protein binds to the cellular adhesion molecule beta-catenin, which is a mammalian homolog of ARMADILLO, a component of the WINGLESS signaling pathway in Drosophila development. Here it is shown that when beta-catenin is present in excess, APC binds to another component of the WINGLESS pathway, glycogen synthase kinase 3beta (GSK3beta), a mammalian homolog of Drosophila ZESTE WHITE 3. APC was a good substrate for GSK3 beta in vitro, and the phosphorylation sites were mapped to the central region of APC. Binding of beta-catenin to this region was dependent on phosphorylation by GSK3 beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubinfeld, B -- Albert, I -- Porfiri, E -- Fiol, C -- Munemitsu, S -- Polakis, P -- New York, N.Y. -- Science. 1996 May 17;272(5264):1023-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, Richmond, CA 94806, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638126" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cytoskeletal Proteins/*metabolism ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Mice ; Mutation ; Phosphorylation ; Protein Binding ; *Trans-Activators ; Tumor Cells, Cultured ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 1996-10-25
    Description: Accessory cell-surface molecules involved in the entry of human immunodeficiency virus-type 1 into cells have recently been identified and shown to belong to the family of chemokine receptors. Treatment of human cell lines with soluble monomeric gp120 at 37 degrees C induced an association between the surface CD4-gp120 complex and a 45-kilodalton protein, which can be down-modulated by the phorbol ester phorbol 12-myristate 13-acetate. The three proteins were coprecipitated from the cell membranes with antibodies to CD4 or to gp120. The 45-kilodalton protein comigrated with fusin on sodium dodecyl sulfate gels and reacted with rabbit antisera to fusin in protein immunoblots. No 45-kilodalton protein could be coprecipitated from similarly treated nonhuman cells. However, infection of 3T3.CD4.401 cells with vaccinia-fusin recombinant virus (vCBYF1), followed by gp120 treatment, resulted in coprecipitation of fusin and CD4.401 molecules from their membranes. Together these data provide evidence for physical association between fusin and the CD4-gp120 complex on cell membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lapham, C K -- Ouyang, J -- Chandrasekhar, B -- Nguyen, N Y -- Dimitrov, D S -- Golding, H -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):602-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849450" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Antigens, CD4/immunology/*metabolism ; Cell Line ; Cell Membrane/*metabolism ; Giant Cells ; HIV Envelope Protein gp120/immunology/*metabolism/pharmacology ; Humans ; Immunoblotting ; Membrane Fusion ; Membrane Proteins/chemistry/immunology/*metabolism ; Mice ; Molecular Sequence Data ; Molecular Weight ; Precipitin Tests ; Receptors, CXCR4 ; Receptors, HIV/chemistry/immunology/*metabolism ; T-Lymphocytes ; Tetradecanoylphorbol Acetate/pharmacology ; Vaccinia virus/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 1996-03-08
    Description: The transition metal ion copper(II) has a critical role in chronic neurologic diseases. The amyloid precursor protein (APP) of Alzheimer's disease or a synthetic peptide representing its copper-binding site reduced bound copper(II) to copper(I). This copper ion-mediated redox reaction led to disulfide bond formation in APP, which indicated that free sulfhydryl groups of APP were involved. Neither superoxide nor hydrogen peroxide had an effect on the kinetics of copper(II) reduction. The reduction of copper(II) to copper(I) by APP involves an electron-transfer reaction and could enhance the production of hydroxyl radicals, which could then attack nearby sites. Thus, copper-mediated toxicity may contribute to neurodegeneration in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Multhaup, G -- Schlicksupp, A -- Hesse, L -- Beher, D -- Ruppert, T -- Masters, C L -- Beyreuther, K -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1406-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ZMBH-Center for Molecular Biology Heidelberg, University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596911" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*metabolism ; Amyloid beta-Protein Precursor/antagonists & inhibitors/chemistry/*metabolism ; Binding Sites ; Copper/*metabolism ; Cysteine/chemistry ; Cystine/metabolism ; Electron Transport ; Ferric Compounds/metabolism ; Histidine/chemistry ; Humans ; Hydrogen Peroxide/metabolism ; Hydroxyl Radical/metabolism ; Mass Spectrometry ; Oligopeptides/pharmacology ; Oxidation-Reduction ; Peptide Fragments/chemistry/metabolism ; Recombinant Fusion Proteins/metabolism ; Superoxides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-02
    Description: Quaternary ammonium blockers inhibit many voltage-activated potassium (K+) channels from the intracellular side. When applied to Drosophila Shaker potassium channels expressed in mammalian cells, these rapidly reversible blockers produced use-dependent inhibition through an unusual mechanism--they promoted an intrinsic conformational change known as C-type inactivation, from which recovery is slow. The blockers did so by cutting off potassium ion flow to a site in the pore, which then emptied at a rate of 10(5) ions per second. This slow rate probably reflected the departure of the last ion from the multi-ion pore: Permeation of ions (at 10(7) per second) occurs rapidly because of ion-ion repulsion, but the last ion to leave would experience no such repulsion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baukrowitz, T -- Yellen, G -- NS29693/NS/NINDS NIH HHS/ -- R01 NS029693/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):653-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School and Massachusetts General Hospital, Boston 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571129" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Humans ; Lidocaine/analogs & derivatives/metabolism/pharmacology ; Potassium/*metabolism ; *Potassium Channel Blockers ; Potassium Channels/metabolism ; Quaternary Ammonium Compounds/metabolism/*pharmacology ; Shaker Superfamily of Potassium Channels ; Tetraethylammonium Compounds/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 1996-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scully, R -- Ganesan, S -- Brown, M -- De Caprio, J A -- Cannistra, S A -- Feunteun, J -- Schnitt, S -- Livingston, D M -- New York, N.Y. -- Science. 1996 Apr 5;272(5258):123-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8600523" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; BRCA1 Protein ; Breast Neoplasms/*chemistry/ultrastructure ; Cell Line ; Cell Nucleus/*chemistry ; Cytoplasm/chemistry ; Female ; Fluorescent Antibody Technique ; Histocytological Preparation Techniques ; Humans ; Immunoenzyme Techniques ; Molecular Sequence Data ; Neoplasm Proteins/*analysis/immunology ; Ovarian Neoplasms/*chemistry/ultrastructure ; Transcription Factors/*analysis/immunology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 1996-01-19
    Description: beta-Arrestins are proteins that bind phosphorylated heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) and contribute to the desensitization of GPCRs by uncoupling the signal transduction process. Resensitization of GPCR responsiveness involves agonist-mediated receptor sequestration. Overexpression of beta-arrestins in human embryonic kidney cells rescued the sequestration of beta 2-adrenergic receptor (beta 2AR) mutants defective in their ability to sequester, an effect enhanced by simultaneous overexpression of beta-adrenergic receptor kinase 1. Wild-type beta 2AR sequestration was inhibited by the overexpression of two beta-arrestin mutants. These findings suggest that beta-arrestins play an integral role in GPCR internalization and thus serve a dual role in the regulation of GPCR function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson, S S -- Downey, W E 3rd -- Colapietro, A M -- Barak, L S -- Menard, L -- Caron, M G -- NS 19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 19;271(5247):363-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute Laboratory, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8553074" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/*pharmacology ; Antigens/genetics/*physiology ; *Arrestins ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/genetics/*metabolism ; DNA, Complementary ; Eye Proteins/genetics/*physiology ; GTP-Binding Proteins/*metabolism ; Humans ; Isoproterenol/pharmacology ; Mutation ; Phosphorylation ; Point Mutation ; Receptors, Adrenergic, beta-2/genetics/*metabolism ; Transfection ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson-Miller, S -- New York, N.Y. -- Science. 1996 May 24;272(5265):1125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Michigan State University, East Lansing, MI 48824-1319, USA. fergus20@pilot.msu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638156" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Electron Transport Complex IV/*chemistry/metabolism ; Molecular Weight ; Protein Conformation ; Protons ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 1996-02-23
    Description: The germline genes used by the mouse to generate the esterolytic antibody 48G7 were cloned and expressed in an effort to increase our understanding of the detailed molecular mechanisms by which the immune system evolves catalytic function. The nine replacement mutations that were fixed during affinity maturation increased affinity for the transition state analogue by a factor of 10(4), primarily the result of a decrease in the dissociation rate of the hapten-antibody complex. There was a corresponding increase in the rate of reaction of antibody with substrate, k(cat)/k(m), from 1.7 x 10(2)M(-1) min(-1) to 1.4 x 10(4)M(-1) min(-1). The three-dimensional crystal structure of the 48G7-transition state analogue complex at 2.0 angstroms resolution indicates that one of the nine residues in which somatic mutations have been fixed directly contact the hapten. Thus, in the case of 48G7, affinity maturation appears to play a conformational role, either in reorganizing the active site geometry of limiting side-chain and backbone flexibility of the germline antibody. The crystal structure and analysis of somatic and directed active site mutants underscore the role of transition state stabilization in the evolution of this catalytic antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patten, P A -- Gray, N S -- Yang, P L -- Marks, C B -- Wedemayer, G J -- Boniface, J J -- Stevens, R C -- Schultz, P G -- R01 AL24695/PHS HHS/ -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1086-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599084" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Catalytic/chemistry/genetics/*immunology/metabolism ; Antibody Affinity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Base Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; *Evolution, Molecular ; Genes, Immunoglobulin ; Haptens/immunology ; Immunoglobulin Fab Fragments/genetics/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Immunoglobulin Light Chains/genetics/immunology ; Mice ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-04
    Description: Hepatitis delta virus (HDV) is a pathogenic human virus whose RNA genome and replication cycle resemble those of plant viroids. However, viroid genomes contain no open reading frames, whereas HDV RNA encodes a single protein, hepatitis delta antigen (HDAg), which is required for viral replication. A cellular gene whose product interacts with HDAg has now been identified, and this interaction was found to affect viral genomic replication in intact cells. DNA sequence analysis revealed that this protein, termed delta-interacting protein A (DIPA), is a cellular homolog of HDAg. These observations demonstrate that a host gene product can modulate HDV replication and suggest that HDV may have evolved from a primitive viroidlike RNA through capture of a cellular transcript.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brazas, R -- Ganem, D -- New York, N.Y. -- Science. 1996 Oct 4;274(5284):90-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8810253" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; *Biological Evolution ; Carrier Proteins/*chemistry/genetics/metabolism ; Cell Line ; Cloning, Molecular ; Genome, Viral ; Hepatitis Antigens/*chemistry/genetics/*metabolism ; Hepatitis Delta Virus/*genetics/physiology ; Hepatitis delta Antigens ; Humans ; Liver/chemistry ; Molecular Sequence Data ; RNA, Messenger/genetics ; RNA, Viral/genetics ; Repressor Proteins ; Sequence Alignment ; Transfection ; Tumor Cells, Cultured ; Viroids/genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-29
    Description: A nuclear magnetic resonance (NMR)-based method is described in which small organic molecules that bind to proximal subsites of a protein are identified, optimized, and linked together to produce high-affinity ligands. The approach is called "SAR by NMR" because structure-activity relationships (SAR) are obtained from NMR. With this technique, compounds with nanomolar affinities for the FK506 binding protein were rapidly discovered by tethering two ligands with micromolar affinities. The method reduces the amount of chemical synthesis and time required for the discovery of high-affinity ligands and appears particularly useful in target-directed drug research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuker, S B -- Hajduk, P J -- Meadows, R P -- Fesik, S W -- New York, N.Y. -- Science. 1996 Nov 29;274(5292):1531-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8929414" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/metabolism ; Binding Sites ; Carrier Proteins/*metabolism ; DNA-Binding Proteins/*metabolism ; Heat-Shock Proteins/*metabolism ; *Ligands ; *Magnetic Resonance Spectroscopy ; Models, Molecular ; Proteins/*metabolism ; Structure-Activity Relationship ; Tacrolimus/*metabolism ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 1996-11-01
    Description: The outermost layer of the human placenta is devoid of classical class I human leukocyte antigens (HLA-A, HLA-B, and HLA-C) and class II proteins (HLA-DR, HLA-DQ, and HLA-DP). Although this prevents recognition by maternal T lymphocytes, the lack of class I molecules leaves these cells susceptible to attack by natural killer (NK) cells. However, trophoblast cells directly in contact with the maternal tissues express the class I molecule HLA-G, which may be involved in protecting the trophoblast from recognition by NK cells. Here evidence is provided that expression of HLA-G is sufficient to protect otherwise susceptible target cells from lysis by activated NK1 and NK2 cell lines and clones that are specific for distinct groups of HLA-C alleles. The receptors on NK cells that recognize HLA-G are also identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pazmany, L -- Mandelboim, O -- Vales-Gomez, M -- Davis, D M -- Reyburn, H T -- Strominger, J L -- CA-47554/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):792-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864122" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD56/analysis ; Cell Line ; Clone Cells ; *Cytotoxicity, Immunologic ; HLA Antigens/genetics/*physiology ; HLA-C Antigens/genetics/physiology ; HLA-G Antigens ; Histocompatibility Antigens Class I/genetics/*physiology ; Humans ; Killer Cells, Natural/*immunology ; Receptors, Immunologic/physiology ; Receptors, KIR ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 1996-09-13
    Description: Integrin function is central to inflammation, immunity, and tumor progression. The urokinase-type plasminogen activator receptor (uPAR) and integrins formed stable complexes that both inhibited native integrin adhesive function and promoted adhesion to vitronectin via a ligand binding site on uPAR. Interaction of soluble uPAR with the active conformer of integrins mimicked the inhibitory effects of membrane uPAR. Both uPAR-mediated adhesion and altered integrin function were blocked by a peptide that bound to uPAR and disrupted complexes. These data provide a paradigm for regulation of integrins in which a nonintegrin membrane receptor interacts with and modifies the function of activated integrins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, Y -- Lukashev, M -- Simon, D I -- Bodary, S C -- Rosenberg, S -- Doyle, M V -- Chapman, H A -- HD 26732/HD/NICHD NIH HHS/ -- HL 02768/HL/NHLBI NIH HHS/ -- HL44712/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1996 Sep 13;273(5281):1551-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD18/metabolism ; Antigens, CD29/metabolism ; *Cell Adhesion ; Cell Line ; Fibronectins/metabolism ; Glycosylphosphatidylinositols/metabolism ; Humans ; Integrins/metabolism/*physiology ; Ligands ; Molecular Sequence Data ; Receptors, Cell Surface/*metabolism ; Receptors, Cytoadhesin/*metabolism ; Receptors, Urokinase Plasminogen Activator ; Recombinant Fusion Proteins/metabolism ; Transfection ; Urokinase-Type Plasminogen Activator/metabolism ; Vitronectin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 1996-11-22
    Description: Aminoglycoside antibiotics that bind to 30S ribosomal A-site RNA cause misreading of the genetic code and inhibit translocation. The aminoglycoside antibiotic paromomycin binds specifically to an RNA oligonucleotide that contains the 30S subunit A site, and the solution structure of the RNA-paromomycin complex was determined by nuclear magnetic resonance spectroscopy. The antibiotic binds in the major groove of the model A-site RNA within a pocket created by an A-A base pair and a single bulged adenine. Specific interactions occur between aminoglycoside chemical groups important for antibiotic activity and conserved nucleotides in the RNA. The structure explains binding of diverse aminoglycosides to the ribosome, their specific activity against prokaryotic organisms, and various resistance mechanisms, and provides insight into ribosome function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fourmy, D -- Recht, M I -- Blanchard, S C -- Puglisi, J D -- GM51266-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1367-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910275" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/chemistry/*metabolism/pharmacology ; Base Composition ; Binding Sites ; Escherichia coli/drug effects/*genetics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Methylation ; Models, Molecular ; *Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; Paromomycin/chemistry/*metabolism/pharmacology ; RNA, Bacterial/*chemistry/metabolism ; RNA, Ribosomal, 16S/*chemistry/metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fried, M G -- Hudson, J M -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1930-1; author reply 1931-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984648" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Cyclic AMP Receptor Protein/chemistry/*metabolism ; DNA, Bacterial/chemistry/*metabolism ; Escherichia coli/genetics ; *Escherichia coli Proteins ; *Lac Operon ; Lac Repressors ; *Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Repressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 1996-07-26
    Description: Random phage display peptide libraries and affinity selective methods were used to isolate small peptides that bind to and activate the receptor for the cytokine erythropoietin (EPO). In a panel of in vitro biological assays, the peptides act as full agonists and they can also stimulate erythropoiesis in mice. These agonists are represented by a 14- amino acid disulfide-bonded, cyclic peptide with the minimum consensus sequence YXCXXGPXTWXCXP, where X represents positions allowing occupation by several amino acids. The amino acid sequences of these peptides are not found in the primary sequence of EPO. The signaling pathways activated by these peptides appear to be identical to those induced by the natural ligand. This discovery may form the basis for the design of small molecule mimetics of EPO.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wrighton, N C -- Farrell, F X -- Chang, R -- Kashyap, A K -- Barbone, F P -- Mulcahy, L S -- Johnson, D L -- Barrett, R W -- Jolliffe, L K -- Dower, W J -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):458-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662529" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteriophages ; Cell Division/drug effects ; Cell Line ; Cloning, Molecular ; Erythropoiesis/drug effects ; Erythropoietin/chemistry/*metabolism/*pharmacology ; Humans ; Ligands ; Mice ; *Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Peptides, Cyclic/chemistry/*metabolism/*pharmacology ; Phosphorylation ; Protein Structure, Secondary ; Receptors, Erythropoietin/*agonists/chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Solubility ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...