ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (356)
  • Mechanical Engineering  (141)
  • Meteorology and Climatology  (124)
  • Environment Pollution
  • GEOPHYSICS
  • Inorganic Chemistry
  • 1995-1999  (356)
  • 1955-1959
  • 1910-1914
  • 1996  (356)
Collection
Years
  • 1995-1999  (356)
  • 1955-1959
  • 1910-1914
Year
  • 1
    Publication Date: 2011-09-13
    Description: Unloaded gas, plain journal bearings experience sub-synchronous whirl motion due to fluid film instabilities and wall contact usually occurs immediately after the onset of the whirl motion. An alternative is the wave journal bearing which significantly improves bearing stability. The predicted threshold where the sub-synchronous whirl motion starts was well confirmed by the experimental observation. In addition, both a two-wave and a three-wave journal bearing can operate free of sub-synchronous whirl motion over a large range in speeds. When the sub-synchronous whirl motion occurs, both the two-wave and three-wave bearing can run in a whirl orbit well within the bearing clearance. At large clearances and wave amplitudes a two-wave bearing, unliKe other bearings, can exhibit a sub-synchronous whirl movement at both low and high speeds, but can run extremely stable and without whirl at intermediate speeds. Moreover, in these cases, the whirl frequencies are close to a quarter of the synchronous speed. The three-wave bearing can exhibit sub-synchronous whirl motion only after a specific threshold when the speed increases and the whirl frequencies are close to half of the synchronous speed.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 337-352; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-13
    Description: This presentation will summarize Pratt & Whitney's past, present, and future activities toward cryogenic fluid-film bearing and seal technology development and implementation. The three major areas of focus for this technology are analytical models and design tools, component testing, and technology implementation. The analytical models and design tools area will include a summary of current tools along with an overview of P&W's new full 3-D Navier-Stokes solution for hydrostatic bearings, HYDROB3D. P&W's comprehensive component test program, including teaming with the Air Force Phillips Laboratory, NASA's Marshall Space Flight Center, and Carrier Corporation, will be outlined. Component test programs consisting of material development and testing, surface patterns/roughness, pocket and orifice geometry variations, and static and dynamic performance of both journal and thrust bearings will be summarized. Finally, the technology implementation area will show the benefits and plans for P&W to incorporate this technology into products.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 223-236; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-13
    Description: Brush seals are compliant, contact seals that have long-life, low-leakage characteristics desirable for use in rocket engine turbopumps. 50.8-mm (2.0 inch) diameter brush seals with a nominal initial radial interference of 0.127-mm (0.005 inch) were tested in liquid nitrogen at shaft speeds up to 35,000 rpm and differential pressure loads up to 1.21 MPa (175 psi) per brush. The measured leakage rate of a single brush was 2-3 times less than that measured for a 12-tooth, 0.127-mm (0.005 inch) radial clearance labyrinth seal used as a baseline. Stage effects were studied and it was found that two brush seals with a large separation distance leaked less than two brushes tightly packed together. The maximum measured groove depth on the Inconel 718 rotor was 25.4 (mu)m (0.001 inch) after 4.31 hours of shaft rotation. The Haynes-25 bristles wore approximately 25.4-76.2 (mu)m (0.001-0.003 inch) under the same conditions. Three seal runner coatings, chromium carbide, Teflon impregnated chromium, and zirconium oxide, were tested in liquid hydrogen at 35,000 and 65,000 rpm with separate 50.8 mm diameter brush seals made of Haynes-25 bristles and having a nominal initial radial interference of 129 rpm. Two bare Inconel-718 rotors were also tested as a baseline. The test results revealed significant differences between the wear characteristics of the uncoated and coated seal runners. At both speeds the brush seal with the bare Inconel-718 seal runner exhibited significant bristle wear with excessive material transferring to the runner surface. In contrast, the coated seal runners inhibited the transfer and deposit of bristle material. The chromium carbide coating showed only small quantities of bristle material transferring to its surface. The Teflon impregnated chromium coating also inhibited material transfer and provided some lubrication. This coating, however, is self-sacrificing. The Teflon remained present on the low speed runner, but it was completely removed from the high speed brush seal, which was tested considerably longer. The tests of the Teflon coating revealed the importance of using a lubricating and low friction coating for brush seals to reduce bristle and seal runner wear. The zirconium oxide coating exhibited the greatest amount of coating wear, while the brushes incurred only slight wear. Further testing of ceramics is recommended before making a final judgement on the viability of ceramic coatings for brush seals because of the contrast between the results reported by Carlile and the results presented herein. Strictly based on the results presented hereinabove, the chromium carbide and Teflon impregnated chromium coatings were considered preferable to the uncoated Inconel-718 and zirconium oxide coatings because of their good wear resistance and characteristics to inhibit bristle material wear and transfer to the seal runner.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 55-66; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-13
    Description: In this paper, the two dimensional(radial and circumferential) transient Navier-Stokes equations are used to solve the hydrodynamic problem in conjunction with the time dependent motion of the journal, and the deformable, spring supported foil. The elastic deformation of the foil and its supports are simulated by a finite element model. The time-dependent Navier-Stokes formulation is used to solve for the interaction between the fluid lubricant, the motion of the journal and the deformable foil boundary. The steady state, the quasi-transient and the full transient dynamic simulation of the foil-fluid journal interaction are examined on a comparative basis. For the steady state simulation, the fluid lubricant pressures are evaluated for a particular journal position, by means of an iterative scheme until convergence is achieved in both the fluid pressures and the corresponding foil deformation. For the quasi-transient case, the transient motion of the journal is calculated using a numerical integration scheme for the velocity and displacement of the journal. The deformation of the foil is evaluated through numerical iteration in feedback mode with the fluid film pressure generated by the journal motion until convergence at every time step is achieved. For the full transient simulation, a parallel real-time integration scheme is used to evaluate simultaneously the new journal position and the new deformed shape of the foil at each time step. The pressure of the fluid lubricant is iterated jointly with the corresponding journal position and the deformed foil geometry until convergence is achieved. A variable time-stepping Newmark-Beta integration procedure is used to evaluate the transient dynamics at each time step of the bearing.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 267-280; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-13
    Description: The aero design of an inward pumping spiral groove face seal using an in-house spread sheet was compared with predictions from the NASA code SPIRALG. The high pressure compressor exit of an aero gas turbine was chosen as the location for the candidate seal. This is a challenging environment as rotational velocity, pressure drop, and temperature are high. This presentation compares the resulting lift forces, leakages, and friction loss for various ride heights. Within practical ranges of ride height, the lift force predictions agreed well. However, both leakage and friction loss predictions were significantly different.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 139-144; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2011-09-13
    Description: A consortium has been formed to address seal problems in the Aerospace sector of Allied Signal, Inc. The consortium is represented by makers of Propulsion Engines, Auxiliary Power Units, Gas Turbine Starters, etc. The goal is to improve Face Seal reliability, since Face Seals have become reliability drivers in many of our product lines. Several research programs are being implemented simultaneously this year. They include: Face Seal Modeling and Analysis Methodology; Oil Cooling of Seals; Seal Tracking Dynamics; Coking Formation & Prevention; and Seal Reliability Methods.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 315-326; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.
    Keywords: Meteorology and Climatology
    Type: Science (ISSN 0036-8075); Volume 272; 5263; 846-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.
    Keywords: Meteorology and Climatology
    Type: Nature (ISSN 0028-0836); Volume 382; 6587; 127-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Progress, future plans and publications regarding the following objectives are presented: (1) Determine the vertical and horizontal spatial distribution of hydrometeors in precipitating clouds; (2) Measure the spatial distribution of liquid water and ice in the clouds; and (3) Measure and determine the limits of measurement of the polarization characteristics related to the shapes and orientations of hydrometeors in precipitating clouds.
    Keywords: Meteorology and Climatology
    Type: Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report; 78-83; NASA/CR-97-206707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The progress, results and future plans for the following objectives are presented: (1) To compare the types, rates, and magnitudes of surficial modification processes that have operated in Northwest China and the Southwestern U.S.; (2) To quantify and understand the basis of the remote sensing signatures of these processes to allow extrapolation from field sites to regional maps and to allow comparisons between widely separated arid regions; (3) To use the resulting chronologies to help define the temporal and spatial distribution of continental climate changes; and (4) Determine the ages of movements on some of the active faults in Northwestern China.
    Keywords: Environment Pollution
    Type: Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report; 48-51; NASA/CR-97-206707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: This laboratory experiment is intended for students in an introductory polymer materials and processes course or engineering materials course. It can be conducted as an introduction to the hand lay-up process, with additional observations regarding the stiffness of the completed composite beams based on core thickness and fiber orientation. Students gain hands-on experience with the hand lay-up process by constructing glass/epoxy composite panels. Each lab group produces a panel with different core thickness or fiber orientation. The panels are then cut into strips and tested for flexural stiffness in a three-point bending fixture. Students plot deflection versus load data for composite beams with two different fiber orientations, two core thicknesses and one beam with laminate plies only (no core). The deflection plots highlight the effects of core thickness and fiber orientation on composite beam stiffness.
    Keywords: Mechanical Engineering
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 79-84; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.
    Keywords: Mechanical Engineering
    Type: Influence of Back-up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports; NASA-CR-202514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic booms during the first few days of exposure. The first eight days of each testing period consisted of eight introductory exposures that were repeated on randomly selected days later in the testing period. Comparison of the introductory exposures with their repeats indicated that the test subjects adapted to the new sonic boom noise environment during the first days of the testing period. Because of the adaptation occurring, the introductory days were deleted from the ds set and the analyses redone. This paper presents the updated analyses. Elimination of the introductory days did not significantly affect the results and conclusions of the initial analyses. This paper also presents analyses of the effects on annoyance of additional factors in the study not previously examined.
    Keywords: Environment Pollution
    Type: The 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 1; 278-297; NASA-CP-3335-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: The latest CHABA Working Group to have reviewed published information about the effects of high energy impulsive sounds (such as sonic booms) on communities has recommended abandonment of the dosage-response relationship identified by its predecessor in favor of two alternate prediction method. Both of the new assessment methods continue to rely on C-weighted measurements of impulsive sounds One of the two assessment methods retains the standard assumptions of the 'equal energy hypothesis' (the notion that annoyance is governed simply by the product of level, duration, and number noise events), and further assumes that the rate of growth of the prevalence of annoyance is proportional to the rate of growth of loudness with level. The other assessment method, however, assumes a level dependent (non-equal energy) summation of the C-weighted sound exposure levels of individual impulsive events. Since predictions of the second method are distribution-dependent, they are not readily represents graphically in the form of a single dosage-response function. The effects on annoyance predictions of variance in distributions of CSEL values of impulsive sounds are explored in this presentation.
    Keywords: Environment Pollution
    Type: The 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 1; 298-310; NASA-CP-3335-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: This paper highlights the accomplishments on a joint effort between NASA - Marshall Space Flight Center and Texas A and M University to develop accurate seal analysis software for use in rocket turbopump design, design audits and trouble shooting. Results for arbitrary clearance profile, transient simulation, thermal effects solution and flexible seal wall model are presented. A new solution for eccentric seals based on cubic spline interpolation and ordinary differential equation integration is also presented.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 299-314; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: The overall goal of NASA's SCAR (Smoke, Cloud and Radiation) Program is to obtain physical and chemical properties of the smoke produced by biomass burning and the effects of the smoke on the earth's radiation balance and climate. It is a joint project with the Brazilian government and their organizations, including INPE (Instituto Nacional Pesquisas Espaciais) who actively participate in all activities. Appropriate estimates of the biomass buming in the tropics is therefore essential to determine its effect on the atmosphere and on climate. The SCAR series of experiments is designed with that purpose. The present study of evaluating the burnt-out areas is to augment the data collected to date to help evaluate the effect of biomass burning.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.
    Keywords: Mechanical Engineering
    Type: Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports; NASA-CR-202514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: Rotordynamic coefficients obtained from testing two different hydrostatic bearings are compared to values predicted by two different computer programs. The first set of test data is from a relatively long (L/D=1) orifice compensated hydrostatic bearing tested in water by Texas A&M University (TAMU Bearing No.9). The second bearing is a shorter (L/D=.37) bearing and was tested in a lower viscosity fluid by Rocketdyne Division of Rockwell (Rocketdyne 'Generic' Bearing) at similar rotating speeds and pressures. Computed predictions of bearing rotordynamic coefficients were obtained from the cylindrical seal code 'ICYL', one of the industrial seal codes developed for NASA-LeRC by Mechanical Technology Inc., and from the hydrodynamic bearing code 'HYDROPAD'. The comparison highlights the difference the bearing has on the accuracy of the predictions. The TAMU Bearing No. 9 test data is closely matched by the predictions obtained for the HYDROPAD code (except for added mass terms) whereas significant differences exist between the data from the Rocketdyne 'Generic' bearing the code predictions. The results suggest that some aspects of the fluid behavior in the shorter, higher Reynolds Number 'Generic' bearing may not be modeled accurately in the codes. The ICYL code predictions for flowrate and direct stiffness approximately equal those of HYDROPAD. Significant differences in cross-coupled stiffness and the damping terms were obtained relative to HYDROPAD and both sets of test data. Several observations are included concerning application of the ICYL code.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 145-158; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: Carbonyl Sulfide(OCS) is considered to be one of the major sources of sulfur appearing in the stratosphere due to its relative inertness, about I to 10 yearsl. However, the roles of OCS as well as other reduced sulfur compounds such as carbon disulfide (CS2), hydrogen sulfide (H2S), and dimethyl disulfide(CH3)2S2, are not completely understood in the atmosphenc sulfur cycle. Consequently vely little information is available about the effect of sulfur compounds in the stratosphere. The ability of OCS to penetrate into the stratosphere makes it an excellent tracer for study of the role of the sulfi r cycle in stratospheric chemistry. Previously techniques such as gas chromatography and whole air sampling have been used to measure OCS analytically. Each technique had its drawbacks however, with both being quite slow, and whole air sampling being somewhat unreliable. With molecular spectroscopy, however, it has been found in recent years that the tunable diode laser absorption spectrometer (TDL) provides a very rapid and accurate method of measuring OCS and other trace gases
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.
    Keywords: Mechanical Engineering
    Type: Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports; NASA-CR-202514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-23
    Description: In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.
    Keywords: Environment Pollution
    Type: NATO ASI Series: The Mount Pinatubo Eruption Effects on the Atmosphere and Climate; Volume 142; 49-59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-23
    Description: Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 77; No. 5; 853-868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-23
    Description: The significant ambiguities inherent in the determination of a particular vertical rain intensity profile from a given time profile of radar echo powers measured by a downward-looking (spaceborne or airborne) radar at a single attenuating frequency are well documented. Indeed, one already knows that by appropriately varying the parameters of the reflectivity-rain rate (Z-R) and/or attenuation-rain rate (k- R) relationships one can produce several substantially different rain-rate profiles that would produce the same radar power profile. Imposing the additional constraint that the path-averaged rain rate be a given fixed number does reduce the ambiguities but falls far short of eliminating them. While formulas to generate all mutually ambiguous rain-rate profiles from a given profile of received radar reflectivities have already been derived, there remains to be produced a quantitative measure to assess how likely each of these profiles is, what the appropriate "average" profile should be, and what the "variance" of these multiple solutions is. To do this, one needs to spell out the stochastic constraints that can allow us to make sense of the words "average" and "variance" in a mathematically rigorous way. Such a quantitative approach would be particularly well suited for such systems as the planned precipitation radar of the Tropical Rainfall Measuring Mission (TRMM). Indeed, one would then be able to use the radar reflectivities measured by the TRMM radar to estimate the rain-rate profile that would most likely have produced the measurements, as well as the uncertainty in the estimated rain rates as a function of range. Such an optimal approach is described in this paper.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 2; 213-228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-23
    Description: The quasi-2-day wave is known as a strong and transient perturbation in the middle and upper atmosphere that often occurs shortly after solstice. The excitation mechanisms of this transient wave have been discussed for years, but no clear answer has yet been attained. In this paper, propagating characteristics of the 2-day wave are studied based on 8-mon temperature measurements from the Microwave Limb Sounder onboard the Upper Atmosphere Research Satellite. The studies are focused on the wave events that happened in January 1993 and in July-August 1993. The observations suggest that winter planetary waves could be responsible for triggering the summer 2-day wave through long penetration into the summer stratosphere. A connection is evident in the evolution of the wave amplitude between the summer 2-day wave generation and winter wave penetration. The data also suggest that the enhancement of the wave amplitude is a manifestation of both a local unstable wave and a global normal-mode Rossby wave.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 53; No. 5; 728-738
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-23
    Description: The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.3-5 microns) and earth-emitted longwave (5- 〉 100 microns) radiances at the top of the atmosphere as part of the Mission to Planet Earth program. The scanning thermistor bolometer sensors respond to radiances in the broadband shortwave (0.3-5 microns) and total-wave (0.3- 〉 100 microns) spectral regions, as well as to radiances in the narrowband water vapor window (8-12 microns) region. 'ne sensors are designed to operate for a minimum of 5 years aboard the NASA Tropical Rainfall Measuring Mission and Earth Observing System AM-1 spacecraft platforms that are scheduled for launches in 1997 and 1998, respectively. The flight sensors and the in-flight calibration systems will be calibrated in a vacuum ground facility using reference radiance sources, tied to the international temperature scale of 1990. The calibrations will be used to derive sensor gains, offsets, spectral responses, and point spread functions within and outside of the field of view. The shortwave, total-wave, and window ground calibration accuracy requirements (1 sigma) are +/-0.8, +/-0.6, and +/-0.3 W /sq m/sr, respectively, while the corresponding measurement precisions are +/-O.5% and +/-1.0% for the broadband longwave and shortwave radiances, respectively. The CERES sensors, in-flight calibration systems, and ground calibration instrumentation are described along with outlines of the preflight and in-flight calibration approaches.
    Keywords: Environment Pollution
    Type: Journal of Atmospheric and Oceanic Technology; Volume 13; 300-313
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-23
    Description: The distribution of many chemical constituents of the atmosphere (e.g., ozone) is at least partially determined by the. distribution of net radiative heating in the atmosphere. In this paper, we demonstrate the significant effect of high cirrus clouds on the net radiative heating of the tropical lower stratosphere. A model of tropical lower stratospheric ozone is then used to demonstrate the sensitivity of calculated ozone to the varying cloud cover used in the model. We conclude that calculated ozone is sensitive to the inclusion of clouds In models and that models of the atmosphere should include a realistic description of tropical cirrus clouds in order to accurately simulate the chemical composition of the atmosphere.
    Keywords: Environment Pollution
    Type: Journal of Atmospheric Chemistry; Volume 23; 209-220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-31
    Description: HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-06-07
    Description: The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 361-375; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-06-07
    Description: Mechanisms for engaging and disengaging electrical and fluid line connectors are required to be operated repeatedly in hazardous or remote locations on space station, nuclear reactors, toxic chemical and undersea environments. Such mechanisms may require shields to protect the mating faces of the connectors when connectors are not engaged and move these shields out of the way during connector engagement. It is desirable to provide a force-transmitting structure to react the force required to engage or disengage the connectors. It is also desirable that the mechanism for moving the connectors and shields is reliable, simple, and the structure as lightweight as possible. With these basic requirements, an Umbilical Mechanism Assembly (UMA) was originally designed for the Space Station Freedom and now being utilized for the International Space Station.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 329-344; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-06-07
    Description: The Mir Environmental Effects Payload (MEEP) consists of four International Space Station Alpha (ISSA) Risk mitigation experiments to be transported and deployed in a common carrier. This carrier is to be transported to the Mir Space Station aboard the Space Shuttle and deployed during a US Extravehicular Activity (EVA) on the handrails of the Mir Docking Module (DM). This paper describes the design of the handrail clamp/ pointing device used by the astronauts to attach the carrier to the station.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 317-322; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-06-07
    Description: The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 323-328; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-06-07
    Description: This paper describes the design, development, and qualification of a new lightweight and compact Antenna Pointing Mechanism (APM). The APM was specially designed to meet the stringent mass, envelope, and environmental requirements of OFFEQ experimental satellite. During the development phase, some problems were encountered with the brushless DC motors, slip ring contact resistance, and bearing drag torque. All of these problems were resolved, and two APM units have been operating successfully in orbit since April, 1995.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 291-298; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-06-07
    Description: The Mars Pathfinder Lander employs numerous mechanisms, as well as autonomous mechanical functions, during its Entry, Descent and Landing (EDL) Sequence. This is the first US lander of its kind, since it is unguided and airbag-protected for hard landing using airbags, instead of retro rockets, to soft land. The arrival condition, location, and orientation of the Lander will only be known by the computer on the Lander. The Lander will then autonomously perform the appropriate sequence to retract the airbags, right itself, and open, such that the Lander is nearly level with no airbag material covering the solar cells. This function uses two different types of mechanisms - the Airbag Retraction Actuators and the Lander Petal Actuators - which are designed for the high torque, low temperature, dirty environment and for limited life application. The development of these actuators involved investigating low temperature lubrication, Electrical Discharge Machining (EDM) to cut gears, and gear design for limited life use.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 255-271; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-06-07
    Description: This paper describes a jettison system used to separate a large, inflatable-deployable antenna from a free-flying spacecraft. The jettison system consists of four discrete Marman band clamps, released simultaneously via pyrotechnics. The design, analysis, analytical simulation, and testing of the system are discussed. Of particular note is the correlation of test results with the Marman band design calculations.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 221-238; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-07
    Description: Since 1975, MECANEX S.A. has been manufacturing components for solar array drives and mechanisms used in space applications. In 1991, work was started in an early phase C (Engineering Model) on a Coarse Pointing Mechanism Assembly (CPMA) for the Semiconductor-laser Inter-satellite Link EXperiment (SILEX). This paper deals with the history, the evolution, and the lessons learned from taking over a pre-design in 1991 to the delivery of last flight models (FM 5 & 6) in 1995.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 91-102; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-07
    Description: On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 65-76; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-07
    Description: This study is a continuation of the summer research of 1995 NASA/ASEE Summer Faculty Fellowship Program. This effort is to provide the infrastructure of an integrated Virtual Reality (VR) environment for the International Space Welding Experiment (ISWE) Analytical Tool and Trainer and the Microgravity Science Glovebox (MSG) Analytical Tool study. Due to the unavailability of the MSG CAD files and the 3D-CAD converter, little was done to the MSG study. However, the infrastructure of the integrated VR environment for ISWE is capable of performing the MSG study when the CAD files become available. Two primary goals are established for this research. First, the essential peripheral devices for an integrated VR environment will be studied and developed for the ISWE and MSG studies. Secondly, the training of the flight crew (astronaut) in general orientation, procedures, and location, orientation, and sequencing of the welding samples and tools are built into the VR system for studying the welding process and training the astronaut.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-06-07
    Description: The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-06-07
    Description: Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-06-07
    Description: Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-06-07
    Description: In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1996 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-205205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-06-07
    Description: Several atmospheric electricity studies were begun utilizing VHF lightning data obtained with the lightning detection and ranging system (LDAR) at the Kennedy Space Center (KSC). The LDAR system uses differences in the time of arrival of electromagnetic noise generated by the lightning process to seven antennas to calculate very accurate three dimensional locations of lightning. New software was developed to obtain the source location of multiple, simultaneous, and spatially separate lightning signatures. Three studies utilizing these data were begun this summer: (1) VHF observations of simultaneous lightning, (2) ground based VHF observations of transionospheric pulse pairs (TIPPs), and (3) properties of intra-cloud recoil streamers. The principal result of each of these studies are: (1) lightning commonly occurs in well separated (2-50 km) regions simultaneously, (2) large amplitude pairs of VHF pulses are commonly observed on the ground but had not been previously identified due to the large number of signals usually observed in the VHF noise of close lightning, and (3) the VHF Q-noise and pulse signatures associated with K-changes within intra-cloud lightning propagate at velocities of more than 10(exp 8) m/s. The interim results of these three studies are reviewed in this brief report.
    Keywords: Meteorology and Climatology
    Type: NASA/ASEE Summer Faculty Fellowship Program; 183-192; NASA-CR-202756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-06-07
    Description: This document describes a simple, light weight, and scalable mechanism capable of deploying flexible or rigid substrate solar arrays that have been configured in an accordion-like folding scheme. This mechanism is unique in that it incorporates a Shape Memory Alloy (SMA) actuator made of Nitinol. This paper documents the design of the mechanism in full detail while offering to designers a foundation of knowledge by which they can develop future applications with SMA's.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 103-118; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-29
    Description: The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-31
    Description: A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-31
    Description: Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-31
    Description: Simultaneous imagery from the University of Wisconsin Volume Imaging Lidar (VIL) and meteorological satellites were used to quantify the spatial structure of cirrus clouds with 60 m resolution. This data was used to determine the spatial distributions of cloud base altitude, cloud top altitude, and mid-cloud altitude. Two dimensional auto-correlation functions describing the mean shape of cirrus clouds were computed. Because cirrus clouds seldom have distinct edges, these correlation functions are derived as a function of a threshold value which defines the cloud edge.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-31
    Description: A methodology for designing velocity-controlled magnetic bearings with laminated cores has been extended to those with solid cores. The eddy-current effect of the solid cores is modeled as an opposing magnetomotive force. The bearing control dynamics is formulated in a dimensionless fashion which can be readily reviewed on a root-locus plot for stability. This facilitates the controller design and tuning process for solid core magnetic bearings using no displacement sensors.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 781-792; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-31
    Description: This paper presents a collocated capacitance sensor for magnetic bearings. The main feature of the sensor is that it is made of a specific compact printed circuit board (PCB). The signal processing unit has been also developed. The results of the experimental performance evaluation on the sensitivity, resolution and frequency response of the sensor are presented. Finally, an application example of the sensor to the active control of a magnetic bearing is described.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 771-780; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-31
    Description: Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 721-736; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-31
    Description: Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed (100-200 mph), Super Speed (200-400 mph), and Hypersonic evacuated tube (400-10,000 mph) Maglev systems.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 551-573; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-31
    Description: This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 483-492; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-31
    Description: Magnetic bearings are capable of applying force and torque to a suspended object without rigidly constraining any degrees of freedom. Additionally, the resolution of magnetic bearings is limited only by sensors and control, and not by the finish of a bearing surface. For these reasons, magnetic bearings appear to be ideal for precision wafer positioning in lithography systems. To demonstrate this capability a linear magnetic bearing has been constructed which uses variable reluctance actuators to control the motion of a 14.5 kg suspended platen in five degrees of freedom. A Lorentz type linear motor of our own design and construction is used to provide motion and position control in the sixth degree of freedom. The stage performance results verify that the positioning requirements of photolithography can be met with a system of this type. This paper describes the design, control, and performance of the linear magnetic bearing.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 453-463; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-31
    Description: This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 421-437; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-31
    Description: This paper presents the results of modeling and system identification efforts on the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF consists of a cylindrical permanent magnet which is levitated above a planar array of five electromagnets mounted in a circular configuration. The analytical model is first developed and open-loop characteristics are described. The system is shown to be highly unstable and requires feedback control in order to apply system identification. Limitations on modeling accuracy due to the effect of eddy-currents on the system are discussed. An algorithm is derived to identify a state-space model for the system from input/output data acquired during closed-loop operation. The algorithm is tested on both the baseline system and a perturbed system which has an increased presence of eddy currents. It is found that for the baseline system the analytic model adequately captures the dynamics, although the identified model improves the simulation accuracy. For the system perturbed by additional unmodeled eddy-currents the analytic model is no longer adequate and a higher-order model, determined through system identification, is required to accurately predict the system's time response.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 403-419; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-31
    Description: Magnetic bearings are often designed using magnetic circuit theory. When these bearings are built, however, effects not included in the usual circuit theory formulation have a significant influence on bearing performance. Two significant sources of error in the circuit theory approach are the neglect of leakage and fringing effects and the neglect of eddy current effects. This work formulates an augmented circuit model in which eddy current and flux leakage and fringing effects are included. Through the use of this model, eddy current power losses and actuator bandwidth can be derived. Electrical impedance predictions from the model are found to be in good agreement with experimental data from a typical magnetic bearing.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 387-401; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-31
    Description: This paper is concerned with the prediction of the low cycle thermal fatigue behavior of a component in a developmental (ATD) high pressure liquid oxygen turbopump (HPOTP) for the Space Shuttle Main Engine (SSME). This component is called the Turnaround Duct (TAD). The TAD is a complex single piece casting of MAR-M-247 material. Its function is to turn the hot turbine exhaust gas (1200 F hydrogen rich gas steam) such that it can exhaust radially out of the turbopump. In very simple terms, the TAD consists of two rings connected axially by 22 hollow airfoil shaped struts with the turning vanes placed at the top, middle, and bottom of each strut. The TAD is attached to the other components of the pump via bolts passing through 14 of the 22 struts. Of the remaining 8 struts, four are equally spaced (90 deg interval) and containing a cooling tube through which liquid hydrogen passes on its way to cool the shaft bearing assemblies. The remaining 4 struts are empty. One of the pump units in the certification test series was destructively examined after 22 test firings. Substantial axial cracking was found in two of the struts which contain cooling tubes. None of the other 20 struts showed any sign of internal cracking. This unusual low cycle thermal fatigue behavior within the two cooling tube struts is the focus of this study.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-31
    Description: The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: One reason for investigating Lightning Detection And Ranging (LDAR) is to validate data from the Optical Transient Detector (OTD). A Time-Of-Arrival (TOA) procedure may be used with radio wave portions of lighting signatures. An antenna is in place at KSC.
    Keywords: Meteorology and Climatology
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-31
    Description: A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.
    Keywords: Meteorology and Climatology
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-31
    Description: High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.
    Keywords: Mechanical Engineering
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 213-234; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-23
    Description: This paper addresses the problem of finding a parametric form for the raindrop size distribution (DSD) that(1) is an appropriate model for tropical rainfall, and (2) involves statistically independent parameters. Such a parameterization is derived in this paper. One of the resulting three "canonical" parameters turns out to vary relatively little, thus making the parameterization particularly useful for remote sensing applications. In fact, a new set of r drop-size-distribution-based Z-R and k-R relations is obtained. Only slightly more complex than power laws, they are very good approximations to the exact radar relations one would obtain using Mie scattering. The coefficients of the new relations are directly related to the shape parameters of the particular DSD that one starts with. Perhaps most important, since the coefficients are independent of the rain rate itself, the relations are ideally suited for rain retrieval algorithms.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 1; 3-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-23
    Description: This paper describes a computationally efficient nearly optimal Bayesian algorithm to estimate rain (and drop size distribution) profiles, given a radar reflectivity profile at a single attenuating wavelength. In addition to estimating the averages of all the mutually ambiguous combinations of rain parameters that can produce the data observed, the approach also calculates the n-ns uncertainty in its estimates (this uncertainty thus quantifies "the amount of ambiguity" in the "solution"). The paper also describes a more general approach that can make estimates based on a radar reflectivity profile together with an approximate measurement of the path-integrated attenuation, or a radar reflectivity profile and a set of passive microwave brightness temperatures. This more general "combined" algorithm is currently being adapted for the Tropical Rainfall Measuring Mission.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 2; 229-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The trend toward smaller satellites has challenged component manufacturers to reduce the size, weight, and cost of their products while maintaining high performance. Both a new stepper motor and a new harmonic drive were developed to meet this need. The resulting actuator embodies small angle stepper technology usually reserved for larger units and incorporates an integral approach to harmonic drive design. By product simplifications, costs were significantly reduced over prior designs.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 311-316; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-06-07
    Description: The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 305-310; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-07
    Description: The modification of a multi-jackbolt mechanism, Superbolt(TM), for on-orbit release of highly loaded bolts is described. Preload and release test data demonstrate that modification of a commercial product produced a solution for the deployment of the Space Station Remote Manipulator System (SSRMS) that was less expensive, faster, and lighter than other alternatives. Using the Superbolt design, virtually unlimited bolt loads can be applied or released with a standard wrench.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 299-304; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-06-07
    Description: The thermal conductance of Hertzian contacts is of great importance to cryogenic spacecraft mechanisms such as the Infra-Red Space Observatory (ISO) and the Far Infra-Red Space Telescope (FIRST). At cryogenic temperatures, cooling of mechanism shafts and associated components occurs via conduction through the bearings. When fluid lubricants are cooled below their pour points, they no longer lubricate effectively, and it is necessary to use low shear strength solid lubricants. Currently, only very limited low temperature data exists on the thermal conductance of Hertzian contacts in both unlubricated and lubricated conditions. This paper reports on measurements of thermal conductance made on stationary ball bearings under cryo-vacuum conditions. Quantitative data is provided to support the development of computer models predicting the thermal conductance of Hertzian contacts and solid lubricants at cryogenic temperatures.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 31-45; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-06-07
    Description: In order to improve the design procedure of constant-torque springs used in aerospace applications, several new analysis techniques have been developed. These techniques make it possible to accurately construct a torque-rotation curve for any general constant-torque spring configuration. These new techniques allow for friction in the system to be included in the analysis, an area of analysis that has heretofore been unexplored. The new analysis techniques also include solutions for the deflected shape of the spring as well as solutions for drum and roller support reaction forces. A design procedure incorporating these new capabilities is presented.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 205-220; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-07
    Description: INTA is currently developing a two-degree-of-freedom antenna pointing mechanism (APM) as part of the ESA ENVISAT POLAR PLATFORM (PPF) program. This mechanism will drive a Ka-band antenna within the Data-Relay Satellite System (DRS) on board the Polar Platform satellite. The first mission using PPF is ENVISAT, which is expected to be flown in 1998. This paper describes the main requirements, design, and test results of this pointing system, as well as the main technical problems from customer requirements and how those have been faced to achieve a final design.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 161-175; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-07
    Description: Early in 1993, a servo motor within one of three Fine Guidance Sensors (FGS) aboard the Hubble Space Telescope (HST) reached stall torque levels on several occasions. Little time was left to plan replacement during the first servicing mission, scheduled at the end of '93. Accelerated bearing life tests confirmed that a small angle rocking motion, known as Coarse Track (CT), accelerated bearing degradation. Saturation torque levels were reached after approximately 20 million test cycles, similar to the flight bearings. Reduction in CT operation, implemented in flight software, extended FGS life well beyond the first servicing mission. However in recent years, bearing torques have resumed upward trends and together with a second, recent bearing torque anomaly has necessitated a scheduled FGS replacement during the upcoming second servicing mission in '97. The results from two series of life tests to quantify FGS bearing remaining life, discussion of bearing on-orbit performance, and future plans to service the FGS servos are presented in this paper.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 13-29; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: NASA needed a way to make high-resolution measurements of the wind profile before launching Saturn vehicles. The standard smooth-surface weather balloons zigzagged or spiraled as they ascended due to air vortices that shed off the surface at various positions, which made accurate radar-tracking measurement impossible. A Marshall Space Flight Center engineer modified the surface of the balloons with conical dixie cups, which stabilized them. Now produced by Orbital Sciences Corporation, the Jimsphere is the standard device at all U.S. missile/launch vehicle ranges.
    Keywords: Meteorology and Climatology
    Type: Spinoff 1996; 80; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Under contract to Jet Propulsion Laboratory, Richard Dudgeon, Inc. developed a heavy lifting load cell system to lift segments of giant antennas in NASA's Deep Space Network. The company commercialized the technology in its Dudgeon High Pressure Ultrathin Pancake Jacks/Hydraulic Load Cells. They are ultralight and ultrathin -- a system weighing 79 pounds can lift 700 tons and can fit between points that measure fractions of an inch. They can be used for bridge weighing/lifting, heavy industrial and turbine weighing/positioning, and weighing/positioning of utilities and power plant equipment.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 100; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: International Machinery Corporation (IMC) developed a miniature earthmover, the 1/8 scale Caterpillar D11N Track-type Tractor, with trademark product approval and manufacturing/marketing license from Caterpillar, Inc. Through Marshall Space Flight Center assistance, the company has acquired infrared remote control technology, originally developed for space exploration. The technology is necessary for exports because of varying restrictions on radio frequency in foreign countries. The Cat D11N weighs only 340 pounds and has the world's first miniature industrial internal combustion engine. The earthmover's uses include mining, construction and demolition work, and hazardous environment work. IMC also has designs of various products for military use and other Caterpillar replicas.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 75; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 101; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Three Sun Coast Chemicals (SCC) of Daytona, Inc. products were derived from NASA technology: Train Track Lubricant, Penetrating Spray Lube, and Biodegradable Hydraulic Fluid. NASA contractor Lockheed Martin Space Operations contacted SCC about joining forces to develop an environmentally safe spray lubricant for the Shuttle Crawler. The formula was developed over an eight-month period resulting in new products which are cost effective and environmentally friendly. Meeting all Environmental Protection Agency requirements, the SCC products are used for applications from train tracks to bicycle chains.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 58; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.
    Keywords: Environment Pollution
    Type: Spinoff 1996; 88-89; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Heterodyne interferometers have been commercially available for many years. In addition, many versions have been built at JPL for various projects. This activity is aimed at improving the accuracy of such interferometers from the 1-30 nanometer level to the picometer level for use in the proposes Stellar Interferometry Mission (SIM) as metrology gauges.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-08
    Description: The solar wind interacts with the Earth's magnetosphere, eventually dissipating energy into the ionosphere and atmosphere. As a terminator, the ionosphere responds to magnetic storms, which is very important in understanding the energy coupling process between the Sun and the Earth and in forecasting space weather changes.The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility. Based on these measurements, global ionospheric TEC maps are generated with time resolution of from 5 minutes to hours. Using these maps, we can analyze the global evolution of ionospheric storms on temporal and spatial scales, which have been dificult to study before. We find that for certain types of storms (such as TID-driven), it is possible to identify them near onset and issue warning signals during the early stages. Main attention has been paid on northern hemispheric winter storms. Their common features and physical mechanisms are being investigated.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-08
    Description: Model results indicate that understanding summer heat balance and freshwater balance in the polar oceans requires knowledge of how much goes into vertical and lateral sea ice melt. In addition to thickness, two of the key ice parameters that affect melt rate are ice concentration and floe size. Smaller ice floes and more open water enables more heat to go into lateral melt preferentially to vertical melt, thereby enhancing warming up the upper ocean and increasing stratification. Using ERS-1 SAR imagery along two areas, one in the Beaufort Sea and another in the Chukchi Sea, floe size distributions were obtained during the summer period in 1992. Comparisons will be made of floe distributions, together with meteorological and buoy measurements, to examine the differences between an ice sink region (Chukchi) and a multiyear ice region (Beaufort) in the summer melt process.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: Correct pointing direction and scanning motions are essential in the operation of many flight payloads, such as balloon-borne telescopes and space-based X- ray and gamma-ray telescopes. Rotating unbalanced mass (RUM) devices have been recently proposed, implemented and successfully tested to produce a variety of scanning motions. Linear scans, raster scans, and circular scans have been successfully generated on a gimbaled payload using pairs of RUM devices. Theoretical analysis, computer simulations, and experiments have also been used to study the feasibility of using RUM devices to control instrument pointing direction, in addition to generating scanning motion. Dynamic modeling of a gimbaled payload equipped with a pair of RUM devices has been studied, and preliminary testing indicates that the pointing control is indeed feasible. However, there is also great potential for significant performance improvements through more advanced control system analysis, modeling and design. In this paper, modeling and control methods are described to achieve simultaneous scanning and pointing control of a gimbaled payload using rotating unbalance mass (RUM) devices. The model development work builds upon the results of Polites et al. and also some modeling approaches from robotics research. Results of some preliminary experiments are discussed and some nonlinear control methods will be proposed.
    Keywords: Mechanical Engineering
    Type: NASA-TM-112521 , NAS 1.15:112521 , AAS-97-065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: This technical note provides the user's manual for the NIDAS-C system developed for the naval oceanographic office. NIDAS-C operates using numerous oceanographic data categories stored in an installed version of the Naval Environmental Operational Nowcast System (NEONS), a relational database management system (rdbms) which employs the ORACLE proprietary rdbms engine. Data management, configuration, and control functions for the supporting rdbms are performed externally. NIDAS-C stores and retrieves data to/from the rdbms but exercises no direct internal control over the rdbms or its configuration. Data is also ingested into the rdbms, for use by NIDAS-C, by external data acquisition processes. The data categories employed by NIDAS-C are as follows: Bathymetry - ocean depth at
    Keywords: Meteorology and Climatology
    Type: AD-A323051 , NASA-CR-205063 , NAS 1.26:205063 , CAST-TN-01-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.
    Keywords: Environment Pollution
    Type: NASA-CR-204999 , NAS 1.26:204999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: Determining moisture variability for all weather scenes is critical to understanding the earth's hydrologic cycle and global climate changes. Remote sensing from geostationary satellites provides the necessary temporal and spatial resolutions necessary for global change studies. Due to antenna size constraints imposed with the use of microwave radiometers, geostationary satellites have carried instruments passively measuring radiation at infrared wavelengths or shorter. The shortfall of using infrared instruments in moisture studies lies in its inability to sense terrestrial radiation through clouds. Microwave emissions, on the other hand, are mostly unaffected by cloudy atmospheres. Land surface emissivity at microwave frequencies exhibit both high temporal and spatial variability thus confining moisture retrievals at microwave frequencies to over marine atmospheres (a near uniform cold background). This study intercompares the total column integrated water content Precipitable Water, (PW) as derived from both the Special Sensor Microwave Imager (SSM/I) and the Geostationary Operational Environmental Satellite (GOES) VISSR Atmospheric Sounder (VAS) pathfinder data sets. PW is a bulk parameter often used to quantify moisture variability and is important to understanding the earth's hydrologic cycle and climate system. This research has been spawned in an effort to combine two different algorithms which together can lead to a more comprehensive quantification of global water vapor. The approach taken here is to intercompare two independent PW retrieval algorithms and to validate the resultant retrievals against an existing data set, namely the European Center for Medium range Weather Forecasts (ECMWF) model analysis data.
    Keywords: Meteorology and Climatology
    Type: NASA-TM-112508 , NAS 1.15:112508 , Eighth Conference on Satellite Meteorology and Oceanography; 68-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.
    Keywords: Environment Pollution
    Type: NASA-CR-204321 , NAS 1.26:204321
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: A robot manipulator controller for a flexible manipulator arm having plural bodies connected at respective movable hinges and flexible in plural deformation modes corresponding to respective modal spatial influence vectors relating deformations of plural spaced nodes of respective bodies to the plural deformation modes, operates by computing articulated body quantities for each of the bodies from respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables, and computing modal deformation accelerations and hinge accelerations is carried out for each one of the bodies beginning with the outermost body by computing a residual body force from a residual body force of a previous body and from the vector of deformation and hinge configuration variables, computing a resultant hinge acceleration from the body force, the residual body force and the articulated hinge inertia, and revising the residual body force modal body acceleration.
    Keywords: Mechanical Engineering
    Type: NASA-Case-NPO-18499-1-CU
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: The Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS) constitute the advanced microwave sounding system to be flown on the EOS-PM platform. Similar instruments (the AMSU-A corresponding to the AMSU and the AMSU-B corresponding to the MHS) are scheduled to become operational on the NOAA polar orbiting satellites beginning with NOAA-K. The unique characteristics of the AMSU-MHS instruments, as compared to the capabilities of their infrared and microwave predecessors, introduce new opportunities, and challenges, for operational retrievals of atmospheric structure. Not only will these new data improve present capabilities for the retrieval of atmospheric profiles of temperature and moisture, but they will provide the only opportunity for successfully retrieving atmospheric temperature and humidity profiles in the presence of modest amounts of cloud and precipitation. A complementary opportunity is presented by the potential of the AMSU-MHS to obtain information about the structure of clouds and precipitation. The data sets obtained will contribute to the current knowledge of global water and energy budgets, and provide critical information on the horizontal and vertical distribution of tropospheric water vapor, the spatial and temporal distribution of rain, and the relationship of cloud formation and dissipation to atmospheric dynamics and thermodynamics.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203714 , NAS 1.26:203714
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce 'contour preforms'. All of the contour preforms on this first-of-a-kind effort were imperfect, and the ingot used to fabricate two of the preforms was of an earlier vintage. As lessons were learned throughout the program, the tooling and procedures evolved, and hence the preform quality. Two of the best contour preforms were near- net forged to produce a process pathfinder Y-ring adapter and a 'mechanical properties pathfinder' Y-ring adapter. At this point, Lockheed Martin Astronautics elected to procure additional 2195 aluminum-lithium ingot of the latest vintage, produce two additional preforms, and substitute them for older vintage material non-perfectly filled preforms already produced on this contract. The existing preforms could have been used to fulfill the requirements of the contract.
    Keywords: Mechanical Engineering
    Type: NASA-CR-203935 , NAS 1.26:203935 , NNF-DOC-014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Cylindrical, sliding contact bearings made entirely of a self-lubricating powder metallurgy composite (PM212) or of super alloy shells lined with clad PM212 were tested in an oscillating mode at temperatures from 25 to 700 C. Tests of 100 hr duration or longer were conducted at a bearing unit load of 3.45 Mpa (500 psi). Shorter duration tests at various unit loads up to 24.1 Mpa (3500 psi) were also conducted. In comparison tests, bearings lubricated with PM212 had superior anti-wear characteristics compared to the baseline, unlubricated, super alloy bearings: no galling of PM212-lubricated bearings occurred, while severe surface damage including galling occurred, especially at high loads, during the baseline tests. A heat treatment procedure, which dimensionally stabilizes PM212 and thereby minimizes clearance changes during high temperature bearing operation, is described.
    Keywords: Mechanical Engineering
    Type: NASA-TM-107307 , NAS 1.15:107307 , E-10396
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: In presenting an overview of the cirrus clouds comprehensively studied by ground based and airborne sensors from Coffeyville, Kansas, during the 5-6 December 1992 First ISCCP Regional Experiment (FIRE) intensive field observation (IFO) case study period, evidence is provided that volcanic aerosols from the June 1991 Pinatubo eruptions may have significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur based particles that became effective cloud forming nuclei in cirrus clouds. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded with the upper level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to approximately 600 L(exp. 1)), complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between -40 and -50 degrees C. Implications for volcanic-cirrus cloud climate effects and unusual (nonvolcanic) aerosol jet stream cirrus cloud formation are discussed.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, cloud physics and cloud formation, mesoscale observations of cloud phenomena, ground-based and satellite cloud cover observations, impact of volcanic aerosols on cloud formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201403 , NAS 1.26:201403 , UW-144-AH14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration isolation system, where the magnetic actuator geometry resembles a conventional magnetic bearing. Magnetostatic computations provide estimates of flux density within airgaps and the iron core material, fringing at the pole faces and the net force generated. Eddy current computations provide coil inductance, power dissipation and the phase lag in the magnetic field, all as functions of excitation frequency. Here, the dynamics of the magnetic bearings, notably the rise time of forces with changing currents, are found to be very strongly affected by eddy currents, even at quite low frequencies. Results are also compared to experimental measurements of the performance of a large-gap magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Eddy current effects are again shown to significantly affect the dynamics of the system. Some consideration is given to the ease and accuracy of computation, specifically relating to OPERA/TOSCA/ELEKTRA.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 707-719; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: The Florida Scrub-Jay (Aphelocoma coerulescens) is an indicator of ecosystem integrity of Florida scrub, an endangered ecosystem that requires frequent fire. One of the largest populations of this federally threatened species occurs on John F. Kennedy Space Center/Merritt Island National Wildlife Refuge. Population trends were predicted using population modeling and field data on reproduction and survival of Florida Scrub-Jays collected from 1988 - 1995. Analyses of historical photography indicated that habitat suitability has been declining for 30 years. Field data and computer simulations suggested that the population declined by at least 40% and will decline by another 40% in 1 0 years, if habitat management is not greatly intensified. Data and computer simulations suggest that habitat suitability cannot deviate greatly from optimal for the jay population to persist. Landscape trajectories of vegetation structure, responsible for declining habitat suitability, are associated with the disruption of natural fire regimes. Prescribed fire alone can not reverse the trajectories. A recovery strategy was developed, based on studies of Florida Scrub-Jays and scrub vegetation. A reserve design was formulated based on conservation science principles for scrub ecosystems. The strategy emphasizes frequent fire to restore habitat, but includes mechanical tree cutting for severely degraded areas. Pine thinning across large areas can produce rapid increases in habitat quality. Site-specific strategies will need to be developed, monitored, and modified to achieve conditions suitable for population persistence.
    Keywords: Environment Pollution
    Type: NASA-TM-111676 , NAS 1.15:111676
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: We study a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and will be required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and a bias correction of forecast anomalies. In brief, the distortion is determined by minimizing the objective function by varying the displacement and bias correction fields. In the present project we use a global or hemispheric domain, and spherical harmonics to represent these fields. In this project we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically we study the forecast errors of the 500 hPa geopotential height field for forecasts of the short and medium range. The forecasts are those of the Goddard Earth Observing System data assimilation system. Results presented show that the methodology works, that a large part of the total error may be explained by a distortion limited to triangular truncation at wavenumber 10, and that the remaining residual error contains mostly small spatial scales.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202058 , NAS 1.26:202058
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...