ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (17)
  • AMS (American Meteorological Society)  (11)
  • Bornträger  (6)
  • AGU / Wiley
  • 1995-1999  (17)
  • 1990-1994
  • 1996  (17)
  • 1
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 . pp. 1721-1734.
    Publikationsdatum: 2018-04-05
    Beschreibung: An initially resting ocean of stratification N is considered, subject to buoyancy loss at its surface of magnitude B0 over a circular region of radius r, at a latitude where the Coriolis parameter is f. Initially the buoyancy loss gives rise to upright convection as an ensemble of plumes penetrates the stratified ocean creating a vertically mixed layer. However, as deepening proceeds, horizontal density gradients at the edge of the forcing region support a geostrophic rim current, which develops growing meanders through baroclinic instability. Eventually finite-amplitude baroclinic eddies sweep stratified water into the convective region at the surface and transport convected water outward and away below, setting up a steady state in which lateral buoyancy flux offsets buoyancy loss at the surface. In this final state quasi-horizontal baroclinic eddy transfer dominates upright “plume” convection. By using “parcel theory” to consider the energy transformations taking place, it is shown that the depth, hfinal at which deepening by convective plumes is arrested by lateral buoyancy flux due to baroclinic eddies, and the time tfinal it takes to reach this depth, is given by both independent of rotation. Here γ and β are dimensionless constants that depend on the efficiency of baroclinic eddy transfer. A number of laboratory and numerical experiments are then inspected and carried out to seek confirmation of these parameter dependencies and obtain quantitative estimates of the constants. It is found that γ = 3.9 ± 0.9 and β = 12 ± 3. Finally, the implications of our study to the understanding of integral properties of deep and intermediate convection in the ocean are discussed.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 13 . pp. 246-254.
    Publikationsdatum: 2018-06-01
    Beschreibung: The incidence angles of the SSM/I radiometers on the DMSP satellites vary from satellite to satellite and exhibit variations of up to 1.5° during one orbit. The effects of these variations on the measured brightness temperatures are investigated on the basis of simulated and measured data for oceanic arm. A deviation of 1° from the nominal incidence angle of 53.0° causes brightness temperature changes of up to 2 K depending on surface and atmospheric conditions. Errors of retrieved geophysical parameters on the order of 5%–10% result when the incidence angle variation is not taken into account. This is a common property of most published statistical algorithms. For total precipitable water and cloud liquid water content the error increases with increasing parameter value. For wind speed the error is largest for low wind speed and decreases with increasing wind speed. Due to the slowly varying latitudinal dependence of the incidence angle, these errors do not cancel out when monthly means are computed. A correction method is developed on the basis of simulated data and tested successfully with measured data. Observed brightness temperature differences between DMSP F10 and F11 are reduced when using corrected data. If diurnal variations of geophysical parameters are investigated, the incidence angle correction is mandatory to obtain useful results, especially for DMSP F10.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Bornträger
    In:  In: The Warmwatersphere of the North Atlantic Ocean. , ed. by Krauß, W. Bornträger, Berlin, Germany, pp. 129-157.
    Publikationsdatum: 2020-04-02
    Materialart: Book chapter , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26(10) . pp. 2281-2285.
    Publikationsdatum: 2018-04-05
    Beschreibung: The compatibility of the Gent and McWilliams thickness mixing parameterization with perturbation thickness fluxes evaluated from eddy-resolving North Atlantic model results is investigated. After extensive spatial and temporal averaging, a linear correlation between the parameterized fluxes and those calculated directly from model fluctuations in the subtropics could be found. A direct estimate of a constant mixing parameter κ could be inferred in the order of 1.0 × 107 cm2 s−1.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 . pp. 2251-2266.
    Publikationsdatum: 2018-04-06
    Beschreibung: A simple point-vortex “heton” model is used to study localized ocean convection. In particular, the statistically steady state that is established when lateral buoyancy transfer, effected by baroclinic instability, offsets the localized surface buoyancy loss is investigated. Properties of the steady state, such as the statistically steady density anomaly of the convection region, are predicted using the hypothesis of a balance between baroclinic eddy transfer and the localized surface buoyancy loss. These predictions compare favorably with the values obtained through numerical integration of the heton model. The steady state of the heron model can be related to that in other convection scenarios considered in several recent studies by means of a generalized description of the localized convection. This leads to predictions of the equilibrium density anomalies in these scenarios, which concur with those obtained by other authors. Advantages of the heton model include its inviscid nature, emphasizing the independence of the fluxes affected by the baroclinic eddies from molecular processes, and its extreme economy, allowing a very large parameter space to be covered. This economy allows us to examine more complicated forcing scenarios: for example, forcing regions of varying shape. By increasing the ellipticity of the forcing region, the instability is modified by the shape and, as a result, no increase in lateral fluxes occurs despite the increased perimeter length. The parameterization of convective mixing by a redistribution of potential vorticity, implicit in the heton model, is corroborated; the heton model equilibrium state has analogous quantitative scaling behavior to that in models or laboratory experiments that resolve the vertical motions. The simplified dynamics of the heton model therefore allows the adiabatic advection resulting from baroclinic instability to be examined in isolation from vertical mixing and diffusive processes. These results demonstrate the importance of baroclinic instability in controlling the properties of a water mass generated by localized ocean convection. A complete parameterization of this process must therefore account for the fluxes induced by horizontal variations in surface buoyancy loss and affected by baroclinic instability.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Bornträger
    In:  In: The Warmwatersphere of the North Atlantic Ocean. , ed. by Krauß, W. Bornträger, Berlin, Germany, pp. 159-193. ISBN 3-443-01033-4
    Publikationsdatum: 2020-04-06
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, 9 (1). pp. 219-239.
    Publikationsdatum: 2018-07-23
    Beschreibung: The physics of the Indo–Pacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with atmospheres at T42 and T21 resolution. The simulations are compared with observations, and the model's mean and seasonal heat budgets and physics in the Indo–Pacific warm pool region are explored for the T42 resolution run. Despite the simulation of a split intertropical convergence zone, and of a cold tongue that extends too far to the west, simulated warm pool temperatures are consistent with observations at T42 resolution, while the T21 resolution yields a cold bias of 1K. At T42 resolution the seasonal migration of the warm pool is reproduced reasonably well, as are the surface heat fluxes, winds, and clouds. However, simulated precipitation is too small compared to observations, implying that the surface density flux is dominated by fluxes of heat. In the Pacific portion of the warm pool, the average net heat gain of the ocean amounts to 30–40 W m−2. In the northern branch, this heat gain is balanced by vertical advection, while in the southern branch, zonal, meridional, and vertical advection cool the ocean at approximately equal rates. At the equator, the surface heat flux is balanced by zonal and vertical advection and vertical mixing. The Indonesian and Indian Ocean portions of the warm pool receive from the atmosphere 30 and 50 W m−2, respectively, and this flux is balanced by vertical advection. The cooling due to vertical advection stems from numerical diffusion associated with the upstream scheme, the coarse vertical resolution of the ocean model, and near-inertial oscillations forced by high-frequency atmospheric variability. The seasonal migration of the warm pool is largely a result of the seasonal variability of the net surface heat flux, horizontal and vertical advections are of secondary importance and increase the seasonal range of surface temperature slightly everywhere in the warm pool, with the exception of its southern branch. There, advection reduces the effect of the surface flux. The seasonal variability of the surface heat flux in turn is mainly determined by the shortwave radiation, but evaporation modifies the signal significantly. The annual cycles of reduction of solar radiation due to clouds and SST evolve independently from each other in the Pacific portion of the warm pool; that is, clouds have little impact on SST. In the Indian Ocean, however, clouds limit the maximum SST attained during the annual cycle. In the western Pacific and Indonesian portion of the warm pool, penetrative shortwave radiation leads to convective mixing by heating deeper levels at a greater rate than the surface, which experiences heat losses due to turbulent and longwave heat fluxes. In the deeper levels, there is no mechanism to balance the heating due to penetrative radiation, except convection and its attendant mixing. In the Indian Ocean, however. the resulting vertical heating profile due to the surface fluxes decreases monotonically with depth and does not support convective mixing. Concurrently, the warm pool is shallower in the Indian Ocean compared with the western Pacific, indicating that convective mixing due to penetrative radiation is important in maintaining the vertical structure of the Pacific portion of the warm pool.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 (4). pp. 559-580.
    Publikationsdatum: 2019-08-08
    Beschreibung: A primitive equation World Ocean model has been integrated with restoring boundary conditions to reach a steady state. The global distribution of potential temperature, salinity, and meridional streamfunction are consistent with observations. In steady state, the effective freshwater fluxes were diagnosed, and the model has been integrated further prescribing these freshwater fluxes. The ocean circulation undergoes self-sustained oscillations over a wide range of timescales, ranging from decadal to millennium. Most pronounced are self-sustained oscillations with a timescale of 20, 300, and 1000 years. The latter two oscillations are coupled. They consist of density (salinity) anomalies that circulate through the global conveyor belt, periodically enhancing convection in the Southern Ocean and limiting convection in the northern North Atlantic. The timescale is set by the vertical diffusion, which destabilizes the stratification in the Southern Ocean when convection is weak. The 20-yr oscillation is a coupled salinity and sea ice thickness anomaly propagating around Antarctica.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 (4). pp. 505-524.
    Publikationsdatum: 2020-08-04
    Beschreibung: During December 1991 to April 1992 measurements with moored acoustic Doppler current profiler (ADCP) stations and shipboard surveys were carried out in the convection regime of the Gulf of Lions, northwestern Mediterranean. First significant mixed layer deepening and generation of internal waves in the stratified intermediate layer occurred during a mistral cooling phase in late December. Mixed layer deepening to about 400 m, eroding the salinity maximum layer of saltier and warmer Levantine Intermediate Water and causing temporary surface-layer warming, followed during a second cooling period of late January. During a mistral cooling period from 18 to 23 February 1992, convection to 1500-m depth was observed, where the size of the convection regime was 50–100 km extent. Vertical velocities 40–640 m deep, recorded by four ADCPs of a triangular moored array of 2 km sidelength in the center of the convection regime, exceeded 5 cm s−1 and were not correlated over the separation of the moorings. Horizontal scales estimated from event duration and advection velocity were only around 500 m, in agreement with scaling arguments for convective plumes. Plume activity during nighttime cooling was larger than daytime daytime. Significant evidence for rotation of the plumes could not be found. Overall, plume energy, and the degree of mixing accomplished by them, was much lower than observed during a stronger mistral in February 1987. The mean vertical velocity over the mistral period, determined from the four ADCPs, was near zero, confirming the role of plumes as mixing agents rather than as part of a mean downdraft in a convection regime. The cyclonic rim current around the convection regime was confined to a strip of 〈20 km width with an average velocity of about 10 cm s−1, which is in agreement with near-zero vertical mean velocity in the interior based on potential vorticity conservation. A relation between variations of the larger-scale cyclonic North Mediterranean Current along the boundary and the deep convection could not be identified. An unexplained feature still is the cover of the convection regime by a shallow layer of light water that moves in rather quickly from the sides after the cooling ends.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 13 . pp. 1202-1208.
    Publikationsdatum: 2020-08-04
    Beschreibung: A method is presented for determining salinity and density from temperature data in conjunction with historical or contemporaneous (but not collocated) CTD observations. The horizontal density ratio r(z) is determined from the temperature and salinity differences at each depth (δT, δS) between pairs or ensembles of profiles. These differences are expressed as a density ratio r=αδT/βδS, where α and β are the expansion coefficients for temperature and salinity, respectively. Salinity at a site where only temperature is measured, as with an expendable bathythermograph (XBT), is computed based on the temperature and salinity at a reference station (SR,TR); that is, S=SR+(T−TR)δS/δT. The method is restrictive in its application because it is most accurate when all water masses in the region of a survey are linear extrapolations from the water masses at each of the reference stations. In reality, it provides useful results when the T and S fields are not simply linear functions of horizontal distance. This approach is particularly useful in regions where, the T(z)−S(z) relation is nonunique, as in the Mediterranean Water in the North Atlantic. The corresponding expression for the lateral density difference for an observed temperature difference (δT) is δρ=−αρ0δT(1−r−1). Observations from regions offshore and along the coast of Portugal are used to evaluate the method. Errors of less than 0.05 psu are exhibited in the evaluation of salinity determined from T-5 XBT drops compared with nearly simultaneous CTD casts. A comparison of water properties and cyclostrophic velocities is made using XCP temperatures and XCP velocities in a meddy.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...