ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing
  • Electronics and Electrical Engineering
  • United States
  • 2000-2004
  • 1995-1999  (341)
  • 1996  (341)
  • 1
    Publication Date: 2019-08-28
    Description: A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northern Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m(exp -2) d(exp -1) (carbon uptake by ecosystem) to + 2 g C m(exp -2) d(exp -1) (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m(exp -2) d(exp -1), dropping to + 0.2 g C m(exp -2) d(exp -1) in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m(exp -2) d(exp -1)) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m(exp -2) y(exp -1), with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m(exp -2) d(exp -1)) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g Cm(exp -2)) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968-1989 showed about 10-20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y@1). Moss NPP ranged from 19 to 114 g C m(exp -2) y(exp -1); spruce NPP from 81 to 150 g C nt-2 y,@l; spruce growth (NPP minus litterfall) from 34 to 103 g C m(exp -2) y(exp -1); NEE ranged from +37 to -142 g C m(exp -2) y(exp -1). Values for these carbon balance terms in 1994 were slightly smaller than the 1969 - 89 means. Higher ecosystem productivity years (more negative NEE) generally had early springs and relatively wet summers; lower productivity years had late springs and relatively dry summers.
    Keywords: Earth Resources and Remote Sensing
    Type: Blobal Change Biology; 2; 343-366
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)
    Keywords: Earth Resources and Remote Sensing
    Type: PB96-862552 , NASA/TM-96-206789 , NAS 1.26:206789
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: A capaciflector sensor system scanned in frequency is used to detect the permittivity of the material of an object being sensed. A capaciflector sensor element, coupled to current-measuring voltage follower circuitry, is driven by a frequency swept oscillator and generates an output which corresponds to capacity as a function of the input frequency. This swept frequency information is fed into apparatus e.g. a digital computer for comparing the shape of the capacitance vs. frequency curve against characteristic capacitor vs. frequency curves for a variety of different materials which are stored, for example, in a digital memory of the computer or a database. Using a technique of pattern matching, a determination is made as to the identification of the material. Also, when desirable, the distance between the sensor and the object can be determined.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: A fault-tolerant, fiber optic interconnect, or backplane, which serves as a via for data transfer between modules. Fault tolerance algorithms are embedded in the backplane by dividing the backplane into a read bus and a write bus and placing a redundancy management unit (RMU) between the read bus and the write bus so that all data transmitted by the write bus is subjected to the fault tolerance algorithms before the data is passed for distribution to the read bus. The RMU provides both backplane control and fault tolerance.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-27
    Description: NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.
    Keywords: Earth Resources and Remote Sensing
    Type: Astrobiology Workshop: Leadership in Astrobiology; A4-A6; NASA-CP-10153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.
    Keywords: Electronics and Electrical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 1; 251-261; NASA-CP-3336-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.
    Keywords: Electronics and Electrical Engineering
    Type: Solid-State Electronics (ISSN 0038-1101); 39; 11; 1659-1668
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.
    Keywords: Earth Resources and Remote Sensing
    Type: Paper 96JE01603 , Journal of Geophysical Research (ISSN 0148-0227); 101; E10; 23,091-23,100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: Snow-covered-area (SCA) and snow grain size are crucial inputs to hydrologic and climatologic modeling of alpine and other seasonally snow-covered regions. SCA is necessary to parameterize energy budget calculations in climate models, to determine in which regions point snowmelt models are to be run for distributed snowmelt modeling efforts and to provide a basis from which estimates of snow water equivalent (SWE) may be made. Snow grain size, SWE and snow impurities determine the spectral albedo of snow, which controls the net solar flux at the snowpack surface. Snow albedo is of the utmost importance in snowmelt modeling, yet the difficulty with which grain size, SWE, and impurities are mapped has left the spatial distribution of snow albedo in alpine catchments poorly understood. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been used to estimate sub-pixel snow-covered-area and snow grain size independently. In this paper we present a technique which improves estimates of both snow parameters by treating their mapping simultaneously.
    Keywords: Earth Resources and Remote Sensing
    Type: Summaries of the Sixth Annual JPL Airborne Earth Science Workshop; 1; 185-188; NASA/CR/96-113073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: The limits of the altimeter data evaluation were analyzed using geostatistical methods. It is often argued that satellite radar altimeter data over ice can not be used to map ice surfaces with a slope exceeding 0.5 deg. The maps presented, obtained from the Geosat satellite geodetic mission, concern the Antarctica north of 72.1 deg South. The grids constructed from other satellite observations facilitate the analysis of the changes in the Antarctic ice stream/ice shelf systems. The evaluation was applied to the Lambert Glacier/Amery Ice Shelf system.
    Keywords: Earth Resources and Remote Sensing
    Type: ; 81-85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...