ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (267)
  • Mechanical Engineering  (141)
  • Nonmetallic Materials  (126)
  • 2020-2022
  • 2010-2014
  • 1995-1999  (267)
  • 1996  (267)
  • 1
    Publication Date: 2011-09-13
    Description: Unloaded gas, plain journal bearings experience sub-synchronous whirl motion due to fluid film instabilities and wall contact usually occurs immediately after the onset of the whirl motion. An alternative is the wave journal bearing which significantly improves bearing stability. The predicted threshold where the sub-synchronous whirl motion starts was well confirmed by the experimental observation. In addition, both a two-wave and a three-wave journal bearing can operate free of sub-synchronous whirl motion over a large range in speeds. When the sub-synchronous whirl motion occurs, both the two-wave and three-wave bearing can run in a whirl orbit well within the bearing clearance. At large clearances and wave amplitudes a two-wave bearing, unliKe other bearings, can exhibit a sub-synchronous whirl movement at both low and high speeds, but can run extremely stable and without whirl at intermediate speeds. Moreover, in these cases, the whirl frequencies are close to a quarter of the synchronous speed. The three-wave bearing can exhibit sub-synchronous whirl motion only after a specific threshold when the speed increases and the whirl frequencies are close to half of the synchronous speed.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 337-352; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-13
    Description: This presentation will summarize Pratt & Whitney's past, present, and future activities toward cryogenic fluid-film bearing and seal technology development and implementation. The three major areas of focus for this technology are analytical models and design tools, component testing, and technology implementation. The analytical models and design tools area will include a summary of current tools along with an overview of P&W's new full 3-D Navier-Stokes solution for hydrostatic bearings, HYDROB3D. P&W's comprehensive component test program, including teaming with the Air Force Phillips Laboratory, NASA's Marshall Space Flight Center, and Carrier Corporation, will be outlined. Component test programs consisting of material development and testing, surface patterns/roughness, pocket and orifice geometry variations, and static and dynamic performance of both journal and thrust bearings will be summarized. Finally, the technology implementation area will show the benefits and plans for P&W to incorporate this technology into products.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 223-236; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-13
    Description: Brush seals are compliant, contact seals that have long-life, low-leakage characteristics desirable for use in rocket engine turbopumps. 50.8-mm (2.0 inch) diameter brush seals with a nominal initial radial interference of 0.127-mm (0.005 inch) were tested in liquid nitrogen at shaft speeds up to 35,000 rpm and differential pressure loads up to 1.21 MPa (175 psi) per brush. The measured leakage rate of a single brush was 2-3 times less than that measured for a 12-tooth, 0.127-mm (0.005 inch) radial clearance labyrinth seal used as a baseline. Stage effects were studied and it was found that two brush seals with a large separation distance leaked less than two brushes tightly packed together. The maximum measured groove depth on the Inconel 718 rotor was 25.4 (mu)m (0.001 inch) after 4.31 hours of shaft rotation. The Haynes-25 bristles wore approximately 25.4-76.2 (mu)m (0.001-0.003 inch) under the same conditions. Three seal runner coatings, chromium carbide, Teflon impregnated chromium, and zirconium oxide, were tested in liquid hydrogen at 35,000 and 65,000 rpm with separate 50.8 mm diameter brush seals made of Haynes-25 bristles and having a nominal initial radial interference of 129 rpm. Two bare Inconel-718 rotors were also tested as a baseline. The test results revealed significant differences between the wear characteristics of the uncoated and coated seal runners. At both speeds the brush seal with the bare Inconel-718 seal runner exhibited significant bristle wear with excessive material transferring to the runner surface. In contrast, the coated seal runners inhibited the transfer and deposit of bristle material. The chromium carbide coating showed only small quantities of bristle material transferring to its surface. The Teflon impregnated chromium coating also inhibited material transfer and provided some lubrication. This coating, however, is self-sacrificing. The Teflon remained present on the low speed runner, but it was completely removed from the high speed brush seal, which was tested considerably longer. The tests of the Teflon coating revealed the importance of using a lubricating and low friction coating for brush seals to reduce bristle and seal runner wear. The zirconium oxide coating exhibited the greatest amount of coating wear, while the brushes incurred only slight wear. Further testing of ceramics is recommended before making a final judgement on the viability of ceramic coatings for brush seals because of the contrast between the results reported by Carlile and the results presented herein. Strictly based on the results presented hereinabove, the chromium carbide and Teflon impregnated chromium coatings were considered preferable to the uncoated Inconel-718 and zirconium oxide coatings because of their good wear resistance and characteristics to inhibit bristle material wear and transfer to the seal runner.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 55-66; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-13
    Description: In this paper, the two dimensional(radial and circumferential) transient Navier-Stokes equations are used to solve the hydrodynamic problem in conjunction with the time dependent motion of the journal, and the deformable, spring supported foil. The elastic deformation of the foil and its supports are simulated by a finite element model. The time-dependent Navier-Stokes formulation is used to solve for the interaction between the fluid lubricant, the motion of the journal and the deformable foil boundary. The steady state, the quasi-transient and the full transient dynamic simulation of the foil-fluid journal interaction are examined on a comparative basis. For the steady state simulation, the fluid lubricant pressures are evaluated for a particular journal position, by means of an iterative scheme until convergence is achieved in both the fluid pressures and the corresponding foil deformation. For the quasi-transient case, the transient motion of the journal is calculated using a numerical integration scheme for the velocity and displacement of the journal. The deformation of the foil is evaluated through numerical iteration in feedback mode with the fluid film pressure generated by the journal motion until convergence at every time step is achieved. For the full transient simulation, a parallel real-time integration scheme is used to evaluate simultaneously the new journal position and the new deformed shape of the foil at each time step. The pressure of the fluid lubricant is iterated jointly with the corresponding journal position and the deformed foil geometry until convergence is achieved. A variable time-stepping Newmark-Beta integration procedure is used to evaluate the transient dynamics at each time step of the bearing.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 267-280; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-13
    Description: The aero design of an inward pumping spiral groove face seal using an in-house spread sheet was compared with predictions from the NASA code SPIRALG. The high pressure compressor exit of an aero gas turbine was chosen as the location for the candidate seal. This is a challenging environment as rotational velocity, pressure drop, and temperature are high. This presentation compares the resulting lift forces, leakages, and friction loss for various ride heights. Within practical ranges of ride height, the lift force predictions agreed well. However, both leakage and friction loss predictions were significantly different.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 139-144; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2011-09-13
    Description: A consortium has been formed to address seal problems in the Aerospace sector of Allied Signal, Inc. The consortium is represented by makers of Propulsion Engines, Auxiliary Power Units, Gas Turbine Starters, etc. The goal is to improve Face Seal reliability, since Face Seals have become reliability drivers in many of our product lines. Several research programs are being implemented simultaneously this year. They include: Face Seal Modeling and Analysis Methodology; Oil Cooling of Seals; Seal Tracking Dynamics; Coking Formation & Prevention; and Seal Reliability Methods.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 315-326; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The objectives of these experiments are to show that the area of biomaterials, especially dental materials (natural and synthetic), contain all of the elements of good and bad design, with the caveat that a person's health is directly involved. The students learn the process of designing materials for the complex interactions in the oral cavity, analyze those already used, and suggest possible solutions to the problems involved with present technology. The N.I.O.S.H. Handbook is used extensively by the students and judgement calls are made, even without extensive biology education.
    Keywords: Nonmetallic Materials
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 225-238; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: This laboratory experiment is intended for students in an introductory polymer materials and processes course or engineering materials course. It can be conducted as an introduction to the hand lay-up process, with additional observations regarding the stiffness of the completed composite beams based on core thickness and fiber orientation. Students gain hands-on experience with the hand lay-up process by constructing glass/epoxy composite panels. Each lab group produces a panel with different core thickness or fiber orientation. The panels are then cut into strips and tested for flexural stiffness in a three-point bending fixture. Students plot deflection versus load data for composite beams with two different fiber orientations, two core thicknesses and one beam with laminate plies only (no core). The deflection plots highlight the effects of core thickness and fiber orientation on composite beam stiffness.
    Keywords: Mechanical Engineering
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 79-84; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Experimental observations on the cyclic behavior of a NiTi alloy (Nitinol) at temperatures in the neighborhood of the A(sub f) (austenite finish) temperature are presented. The strongly heterogeneous nature of the deformation behavior of this material at temperatures within this regime during the first cycle is examined with emphasis placed on the difficulties that the existence of such phenomena pose on the formulation of realistic constitutive relations. It is further demonstrated that this heterogeneity of deformation persists on subsequent cycles with the result that the hysteretic cyclic behavior of these alloys can exhibit a point to point variation in an otherwise uniform geometry. The experimental observations on the deformation behavior of this alloy show that it is strongly dependent on temperature and prior deformation history of the sample, thus resulting in an almost intractable problem with respect to capturing an adequate constitutive description from either experiment or modeling.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 381-385; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.
    Keywords: Mechanical Engineering
    Type: Influence of Back-up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports; NASA-CR-202514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.
    Keywords: Nonmetallic Materials
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 157-163; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: The objective of this presentation was to point out the fact that there are many promising applications for smart structures technology on hypersonic vehicles. This is not inherently obvious due to the real and perceived operating environments of hypersonic vehicles. The idea behind this project was to talk to hypersonic vehicle designers and academics to find out what sort of problems could be solved with smart structures. Two main conclusions can be drawn: One is that the actual environment inside a hypersonic vehicle is not always as severe as it appears. The second is that the hypersonic community needs a different type of research done on a faster timetable in order to use smart structures technology. Vehicle design cycle times are such that a technology must be proven before the vehicle is designed.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 182-186; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Materials Systems Inc. has developed a cost-effective technology for producing 1-3 piezoelectric ceramic/polymer composites for use in active surface control. MSI's 103 piezocomposite SonoPanel(TM) transducers consist of an array of piezoelectric ceramic rods arranged in a compliant polymer matrix. The standard SonoPanel(TM) composite consists of 15 volume percent PZT-5H rods 1.1 mm diameter x 6.3 mm long in a matrix of soft polyurethane. Stiff face plates are then bonded to the 1-3 composite sheet for stress amplification when used as a sensor and to enhance the surface response uniformity when used as an actuator. Many variations on this composite design have been produced for specific application requirements.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 276-280; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 227-234; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: Electrorheological fluids (ERF) are an intriguing class of non-Newtonian industrial fluids. They consist of fine dielectric particles suspended in liquids of low dielectric constants. The objectives of this research were to select a particulate system such that: (1) its density can be varied to match that of the selected liquid, and (2) the dielectric constant of the particles and the liquids should be such that the critical fields needed for asymptotic increase in viscosity are less than or equal to 10 KV/cm. Synthetic Zeolite particles were selected as the solute/suspensions. Octoil oil was selected as the solvent. The results are summarized here.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 187-190; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: This paper highlights the accomplishments on a joint effort between NASA - Marshall Space Flight Center and Texas A and M University to develop accurate seal analysis software for use in rocket turbopump design, design audits and trouble shooting. Results for arbitrary clearance profile, transient simulation, thermal effects solution and flexible seal wall model are presented. A new solution for eccentric seals based on cubic spline interpolation and ordinary differential equation integration is also presented.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 299-314; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: The presence and importance of polycyclic aromatic hydrocarbons (PAHs, a large family of organic compounds containing carbon and hydrogen) in the interstellar medium has already been well established. The Astrochemistry Laboratory at NASA Ames Research Center (under the direction of Louis Allamandola and Scott Sandford) has been the center of pioneering work in performing spectroscopy on these molecules under simulated interstellar conditions, and consequently in the identification of these species in the interstellar medium by comparison to astronomically obtained spectra. My project this summer was twofold: (1) We planned on obtaining absorption spectra of a number of PAHs and their cations in cold (4K) Ne matrices. The purpose of these experiments was to increase the number of different PAHs for which laboratory spectra have been obtained under these simulated interstellar conditions; and (2) I was to continue the planning and design of a new laser facility that is being established in the Astrochemistry laboratory. The laser-based experimental set-up will greatly enhance our capability in examining this astrophysically important class of compounds.
    Keywords: Nonmetallic Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.
    Keywords: Mechanical Engineering
    Type: Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports; NASA-CR-202514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This laboratory procedure starts with a violet suspension of an 'alfin' catalyst being added to a bottle containing a solution of 1,3-butadiene in pentane. The bottle is corked and shaken for several seconds. The mixture sets to a gel, and within 2 minutes the contents erupt from the bottle.
    Keywords: Nonmetallic Materials
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 73-78; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 375-379; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 289-293; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 281-285; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 197-201; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This presentation covers the use of smart materials in Naval Research Laboratory (NRL) research for sensors, actuators, and modeling and control. Emphasis is on optical fiber Bragg gratings, piezoelectric actuators, shape memory alloy actuators, and polymer matrix and interfaces.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 47-86; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: This overview of the presentation covers Langley's smart materials infrastructure, materials research, applications, and summary. Langley's infrastructure consists of fabrication and characterization of smart structures. Materials researched include ceramics, polymers, and polymer-ceramic composites. Applications include interior aircraft noise suppression, aircraft engine noise reduction, active flutter damping of aircraft wings for better performance, active shape control of polymeric reflectors, and aircraft wing distortion to eliminate control surfaces.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 31-46; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: Rotordynamic coefficients obtained from testing two different hydrostatic bearings are compared to values predicted by two different computer programs. The first set of test data is from a relatively long (L/D=1) orifice compensated hydrostatic bearing tested in water by Texas A&M University (TAMU Bearing No.9). The second bearing is a shorter (L/D=.37) bearing and was tested in a lower viscosity fluid by Rocketdyne Division of Rockwell (Rocketdyne 'Generic' Bearing) at similar rotating speeds and pressures. Computed predictions of bearing rotordynamic coefficients were obtained from the cylindrical seal code 'ICYL', one of the industrial seal codes developed for NASA-LeRC by Mechanical Technology Inc., and from the hydrodynamic bearing code 'HYDROPAD'. The comparison highlights the difference the bearing has on the accuracy of the predictions. The TAMU Bearing No. 9 test data is closely matched by the predictions obtained for the HYDROPAD code (except for added mass terms) whereas significant differences exist between the data from the Rocketdyne 'Generic' bearing the code predictions. The results suggest that some aspects of the fluid behavior in the shorter, higher Reynolds Number 'Generic' bearing may not be modeled accurately in the codes. The ICYL code predictions for flowrate and direct stiffness approximately equal those of HYDROPAD. Significant differences in cross-coupled stiffness and the damping terms were obtained relative to HYDROPAD and both sets of test data. Several observations are included concerning application of the ICYL code.
    Keywords: Mechanical Engineering
    Type: Seals Code Development Workshop; 145-158; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: Amorphous polyarylene ether ketones were examined in the glassy state by positron annihilation lifetime spectroscopy ( PALS ) and in the melt by standard rheological techniques. Specimens were well-characterized fractions of two isomeric structures. PALS clearly shows that the polymer with meta linkages in its backbone contains larger voids (greater than 0.25 nm radius). Thus despite their similar bulk densities, the two materials must pack very differently on a local scale. On the other hand, the free volumes inferred from the WLF treatment of melt viscosity data are practically identical in both materials ca. 4% at T(sub g). The comparison between techniques sheds some light on the distribution of free volume.
    Keywords: Nonmetallic Materials
    Type: Investigation of Polymer Liquid Crystals (ISSN 0887-6266); NASA-CR-203249
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.
    Keywords: Mechanical Engineering
    Type: Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports; NASA-CR-202514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-12-03
    Description: The need for fast electro-optic switches and modulators for optical communication, and laser frequency conversion has created a demand for new second-order non-linear optical materials. One approach to produce such materials is to align chromophores with large molecular hyperpolarizabilities in polymers. Recently fulvenes and benzofulvenes which contain electron donating groups have been shown to exhibit large second-order non-linear optical properties. The resonance structures shown below suggest that intramolecular charge transfer (ICT) should be favorable in omega - (hydroxyphenyl)benzofulvenes and even more favorable in omega-omega - (phenoxy)benzofulvenes because of the enhanced donor properties of the O group. This ICT should lead to enormously enhanced second-order hyperpolarizability. We have prepared all three new omega - (hydroxyphenyl)benzofulvenes by the condensation of indene with the appropriate hydroxyaryl aldehyde in MeOH or MeOH/H2O under base catalysis. In a similar fashion we have prepared substituted benzofulvenes with multipal donor groups. Preliminary studies show that some of our benzofulvene derivatives exhibit second order harmonic generation (SHG). Measurements were carried out by preparing host-guest polymers. The results of our work on benzofulvene derivatives in host-guest polymers when covalently bonded in the polymer will be described.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 386; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: In this work a series of polyimides are investigated which exhibit a strong piezoelectric response and polarization stability at temperatures in excess of 100 C. This work was motivated by the need to develop piezoelectric sensors suitable for use in high temperature aerospace applications.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 368-372; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: Adapting procedures widely used in the metallographic characterization of metals and alloys, the microstructural preparation and examination of three polymer-matrix composites (PMC's) is described. The materials investigated contained either hollow ceramic filler particles or woven, continuous carbon/graphite fibers. Since the two particulate composites were considered to be isotropic, only one sample orientation was prepared. For the fiber composite, both longitudinal and planar orientations were studied. Once prepared, the samples were examined using reflected light microscopy. A number of microstructural features were evaluated qualitatively, including porosity and cracks, filler-matrix interfacial bonding, filler particle characteristics (shape, size, size distribution, and loading variation) and fiber characteristics (orientation, packing variation, and discontinuities).
    Keywords: Nonmetallic Materials
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 55-68; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-12-03
    Description: The use of the magnetostrictive material Terfenol-D as a motion source in active vibration control (AVC) systems are being studied. Currently it is of limited use due to the nonlinear nature of the strain versus magnetization curve and the magnetic hysteresis in the Terfenol-D. One manifestation of these nonlinearities is waveform distortion in the output velocity of the transducer. For Terfenol-D to be used in ever greater numbers of AVC systems, these nonlinearities must be addressed. In this study the nonlinearities are treated as disturbances to a linear system. The acceleration output is used in simple analog and digital feedback control schemes to improve linearity of the transducer. In addition, the use of a Terfenol-D actuator in an AVC system is verified. Both analog and digital controllers are implemented and results compared. A cantilever beam system is considered for AVC applications. The second thrust of this presentation is the reduction of harmonic distortions. Two conclusions can be reached from this work. One, the linearization of Terfenol-D transducers is possible with the use of feedback controllers, both digital and analog. Second, Terfenol-D is a viable motion source in active vibration control systems utilizing either analog or digital controllers.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 393-396; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-31
    Description: A study was carried out to identify, develop, and benchmark simulation techniques needed for optimum thermal protection system (TPS) material selection and sizing for reusable launch vehicles. Fully viscous, chemically reacting, Navier-Stokes flow solutions over the Langley wing-body single stage to orbit (SSTO) configuration were generated and coupled with an in-depth conduction code. Results from the study provide detailed TPS heat shield materials selection and thickness sizing for the wing-body SSTO. These results are the first ever achieved through the use of a complete, trajectory based hypersonic, Navier-Stokes solution database. TPS designs were obtained for both laminar and turbulent entry trajectories using the Access-to-Space baseline materials such as tailorable advanced blanket insulation. The TPS design effects (materials selection and thickness) of coupling material characteristics to the aerothermal environment are illustrated. Finally, a sample validation case using the shuttle flight database is included.
    Keywords: Nonmetallic Materials
    Type: Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology; 963-976; NASA-CP-3332-Vol-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-31
    Description: HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-07
    Description: The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 361-375; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-07
    Description: Mechanisms for engaging and disengaging electrical and fluid line connectors are required to be operated repeatedly in hazardous or remote locations on space station, nuclear reactors, toxic chemical and undersea environments. Such mechanisms may require shields to protect the mating faces of the connectors when connectors are not engaged and move these shields out of the way during connector engagement. It is desirable to provide a force-transmitting structure to react the force required to engage or disengage the connectors. It is also desirable that the mechanism for moving the connectors and shields is reliable, simple, and the structure as lightweight as possible. With these basic requirements, an Umbilical Mechanism Assembly (UMA) was originally designed for the Space Station Freedom and now being utilized for the International Space Station.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 329-344; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-07
    Description: The Mir Environmental Effects Payload (MEEP) consists of four International Space Station Alpha (ISSA) Risk mitigation experiments to be transported and deployed in a common carrier. This carrier is to be transported to the Mir Space Station aboard the Space Shuttle and deployed during a US Extravehicular Activity (EVA) on the handrails of the Mir Docking Module (DM). This paper describes the design of the handrail clamp/ pointing device used by the astronauts to attach the carrier to the station.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 317-322; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-06-07
    Description: The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 323-328; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-06-07
    Description: This paper describes the design, development, and qualification of a new lightweight and compact Antenna Pointing Mechanism (APM). The APM was specially designed to meet the stringent mass, envelope, and environmental requirements of OFFEQ experimental satellite. During the development phase, some problems were encountered with the brushless DC motors, slip ring contact resistance, and bearing drag torque. All of these problems were resolved, and two APM units have been operating successfully in orbit since April, 1995.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 291-298; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-06-07
    Description: The Mars Pathfinder Lander employs numerous mechanisms, as well as autonomous mechanical functions, during its Entry, Descent and Landing (EDL) Sequence. This is the first US lander of its kind, since it is unguided and airbag-protected for hard landing using airbags, instead of retro rockets, to soft land. The arrival condition, location, and orientation of the Lander will only be known by the computer on the Lander. The Lander will then autonomously perform the appropriate sequence to retract the airbags, right itself, and open, such that the Lander is nearly level with no airbag material covering the solar cells. This function uses two different types of mechanisms - the Airbag Retraction Actuators and the Lander Petal Actuators - which are designed for the high torque, low temperature, dirty environment and for limited life application. The development of these actuators involved investigating low temperature lubrication, Electrical Discharge Machining (EDM) to cut gears, and gear design for limited life use.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 255-271; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-06-07
    Description: This paper describes a jettison system used to separate a large, inflatable-deployable antenna from a free-flying spacecraft. The jettison system consists of four discrete Marman band clamps, released simultaneously via pyrotechnics. The design, analysis, analytical simulation, and testing of the system are discussed. Of particular note is the correlation of test results with the Marman band design calculations.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 221-238; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-06-07
    Description: Since 1975, MECANEX S.A. has been manufacturing components for solar array drives and mechanisms used in space applications. In 1991, work was started in an early phase C (Engineering Model) on a Coarse Pointing Mechanism Assembly (CPMA) for the Semiconductor-laser Inter-satellite Link EXperiment (SILEX). This paper deals with the history, the evolution, and the lessons learned from taking over a pre-design in 1991 to the delivery of last flight models (FM 5 & 6) in 1995.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 91-102; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-06-07
    Description: On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 65-76; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-06-07
    Description: This study is a continuation of the summer research of 1995 NASA/ASEE Summer Faculty Fellowship Program. This effort is to provide the infrastructure of an integrated Virtual Reality (VR) environment for the International Space Welding Experiment (ISWE) Analytical Tool and Trainer and the Microgravity Science Glovebox (MSG) Analytical Tool study. Due to the unavailability of the MSG CAD files and the 3D-CAD converter, little was done to the MSG study. However, the infrastructure of the integrated VR environment for ISWE is capable of performing the MSG study when the CAD files become available. Two primary goals are established for this research. First, the essential peripheral devices for an integrated VR environment will be studied and developed for the ISWE and MSG studies. Secondly, the training of the flight crew (astronaut) in general orientation, procedures, and location, orientation, and sequencing of the welding samples and tools are built into the VR system for studying the welding process and training the astronaut.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-06-07
    Description: The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-06-07
    Description: Experimentally, many of the functions of electrical circuits have been demonstrated using optical circuits and, in theory, all of these functions may be accomplished using optical devices made of nonlinear optical materials. Actual construction of nonlinear optical devices is one of the most active areas in all optical research being done at this time. Physical vapor transport (PVT) is a promising technique for production of thin films of a variety of organic and inorganic materials. Film optical quality, orientation of microcrystals, and thickness depends critically on type of material, pressure of buffer gas and temperature of deposition. An important but understudied influence on film characteristics is the effect of gravity-driven buoyancy. Frazier, Hung, Paley, Penn and Long have recently reported mathematical modelling of the vapor deposition process and tested the predictions of the model on the thickness of films grown by PVT of 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA). In an historic experiment, Debe, et. al. offered definitive proof that copper phthalocyanine films grown in a low gravity environment are denser and more ordered than those grown at 1 g. This work seeks to determine the influence on film quality of gravity driven buoyancy in the low pressure PVT film growth of metal-free phthalocyanine.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-06-07
    Description: Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-06-07
    Description: Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-06-07
    Description: In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1996 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-205205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-07
    Description: Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.
    Keywords: Nonmetallic Materials
    Type: NASA/ASEE Summer Faculty Fellowship Program; 21-30; NASA-CR-202756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-06-07
    Description: Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.
    Keywords: Nonmetallic Materials
    Type: Third Microgravity Fluid Physics Conference; 383-388; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-06-07
    Description: This document describes a simple, light weight, and scalable mechanism capable of deploying flexible or rigid substrate solar arrays that have been configured in an accordion-like folding scheme. This mechanism is unique in that it incorporates a Shape Memory Alloy (SMA) actuator made of Nitinol. This paper documents the design of the mechanism in full detail while offering to designers a foundation of knowledge by which they can develop future applications with SMA's.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 103-118; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-31
    Description: A methodology for designing velocity-controlled magnetic bearings with laminated cores has been extended to those with solid cores. The eddy-current effect of the solid cores is modeled as an opposing magnetomotive force. The bearing control dynamics is formulated in a dimensionless fashion which can be readily reviewed on a root-locus plot for stability. This facilitates the controller design and tuning process for solid core magnetic bearings using no displacement sensors.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 781-792; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-31
    Description: This paper presents a collocated capacitance sensor for magnetic bearings. The main feature of the sensor is that it is made of a specific compact printed circuit board (PCB). The signal processing unit has been also developed. The results of the experimental performance evaluation on the sensitivity, resolution and frequency response of the sensor are presented. Finally, an application example of the sensor to the active control of a magnetic bearing is described.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 771-780; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-31
    Description: Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 721-736; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-31
    Description: Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed (100-200 mph), Super Speed (200-400 mph), and Hypersonic evacuated tube (400-10,000 mph) Maglev systems.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 551-573; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-31
    Description: This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 483-492; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-31
    Description: Magnetic bearings are capable of applying force and torque to a suspended object without rigidly constraining any degrees of freedom. Additionally, the resolution of magnetic bearings is limited only by sensors and control, and not by the finish of a bearing surface. For these reasons, magnetic bearings appear to be ideal for precision wafer positioning in lithography systems. To demonstrate this capability a linear magnetic bearing has been constructed which uses variable reluctance actuators to control the motion of a 14.5 kg suspended platen in five degrees of freedom. A Lorentz type linear motor of our own design and construction is used to provide motion and position control in the sixth degree of freedom. The stage performance results verify that the positioning requirements of photolithography can be met with a system of this type. This paper describes the design, control, and performance of the linear magnetic bearing.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 453-463; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 421-437; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-31
    Description: This paper presents the results of modeling and system identification efforts on the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF consists of a cylindrical permanent magnet which is levitated above a planar array of five electromagnets mounted in a circular configuration. The analytical model is first developed and open-loop characteristics are described. The system is shown to be highly unstable and requires feedback control in order to apply system identification. Limitations on modeling accuracy due to the effect of eddy-currents on the system are discussed. An algorithm is derived to identify a state-space model for the system from input/output data acquired during closed-loop operation. The algorithm is tested on both the baseline system and a perturbed system which has an increased presence of eddy currents. It is found that for the baseline system the analytic model adequately captures the dynamics, although the identified model improves the simulation accuracy. For the system perturbed by additional unmodeled eddy-currents the analytic model is no longer adequate and a higher-order model, determined through system identification, is required to accurately predict the system's time response.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 403-419; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-31
    Description: Magnetic bearings are often designed using magnetic circuit theory. When these bearings are built, however, effects not included in the usual circuit theory formulation have a significant influence on bearing performance. Two significant sources of error in the circuit theory approach are the neglect of leakage and fringing effects and the neglect of eddy current effects. This work formulates an augmented circuit model in which eddy current and flux leakage and fringing effects are included. Through the use of this model, eddy current power losses and actuator bandwidth can be derived. Electrical impedance predictions from the model are found to be in good agreement with experimental data from a typical magnetic bearing.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 387-401; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-31
    Description: This paper is concerned with the prediction of the low cycle thermal fatigue behavior of a component in a developmental (ATD) high pressure liquid oxygen turbopump (HPOTP) for the Space Shuttle Main Engine (SSME). This component is called the Turnaround Duct (TAD). The TAD is a complex single piece casting of MAR-M-247 material. Its function is to turn the hot turbine exhaust gas (1200 F hydrogen rich gas steam) such that it can exhaust radially out of the turbopump. In very simple terms, the TAD consists of two rings connected axially by 22 hollow airfoil shaped struts with the turning vanes placed at the top, middle, and bottom of each strut. The TAD is attached to the other components of the pump via bolts passing through 14 of the 22 struts. Of the remaining 8 struts, four are equally spaced (90 deg interval) and containing a cooling tube through which liquid hydrogen passes on its way to cool the shaft bearing assemblies. The remaining 4 struts are empty. One of the pump units in the certification test series was destructively examined after 22 test firings. Substantial axial cracking was found in two of the struts which contain cooling tubes. None of the other 20 struts showed any sign of internal cracking. This unusual low cycle thermal fatigue behavior within the two cooling tube struts is the focus of this study.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: The Solid Rocket Boosters (SRB's) used to launch the Space Shuttle are coated with a layer of ablative material to prevent thermal damage when they reenter the earth's atmosphere. The coating consists of a mixture of cork, glass, and resin. A new coating (Marshall Convergent Coating, MCC-2) was recently developed that is environmentally complaint. The coating must meet certain minimum thickness standards in order to protect the SRB. The coating is applied by a robot controlled nozzle that moves from the bottom to top, as the rocket part rotates on a table. Several coats are applied, building up to the desired thickness. Inspectors do a limited amount of destructive 'wet' testing. This involves an inspector inserting a rod in the wet coating and removing the rod. This results in a hole that, of course, must be patched later. The material is cured and the thickness is measured. There is no real-time feedback as the coating is being applied. Although this might seem like the best way to control thickness, the problems with 'blowback' (reflected material covering the sensor) are formidable, and have not been solved. After the thermal coating is applied, a protective top coat is applied. The SRB part is then placed in a oven and baked to harden the surface. The operations personnel then measure the thickness of the layer using the Kaman 7200 Displacement Measuring System. The probe is placed on the surface. One person (the inspector) reads the instrument, while another(the technician) records the thickness. Measurements are taken at one foot intervals. After the measurements are taken, the number of low readings is tabulated. If more than 10 percent of the points fall below the minimum value, there is a design review, and the part may be stripped of coating, and a new coating is applied. There is no other analysis.
    Keywords: Nonmetallic Materials
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-31
    Description: The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these.
    Keywords: Mechanical Engineering
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.
    Keywords: Mechanical Engineering
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 213-234; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-07
    Description: Electrostatic discharge (ESD) has been shown to be the primary cause of several glitches in spacecraft operations. It appears that charged particles encountered in the natural environment in certain orbits can collect on the outer surfaces of a spacecraft, building up a charge of several thousand volts. If the potential exceeds the breakdown voltage of the charged material, then an ESD will occur. ESD events involving relatively low voltages, on the order of 100 V, have been shown to damage electronic components. When ESD occurs, electronic and electrical components can be damaged, computer instructions can be garbled, and ablation of material from the spacecraft may occur; degrading both the performance of the thermal control blankets, and the cleanliness of any surfaces on which the detritus becomes deposited. There appear to be six ways to prevent or mitigate the effects of ESD: (1) Choose an orbit where charging is not a problem; (2) Carry extra electromagnetic shielding; (3) Provide redundancy in components and programming; (4) Provide for active dissipation of the charge, by generating a plasma with which to bathe susceptible surfaces; (5) Provide for passive dissipation from a plasma contactors on the susceptible surfaces; and (6) Provide thermal control blankets that do not hold a charge, i.e., that are conductive enough to bleed a charge off harmlessly. These six options are discussed in detail in Losure (1996). Of these six options, number 1 is not always practical, given other requirements of the mission; 2, 3, 4 and 5 will require that extra mass in the form of shielding, etc., be carried by the spacecraft. The most attractive option from a mass and energy point of view seems to be that of finding a material which matches the other performance characteristics of the current thermal control blankets without their tendency to build up an electrostatic charge. The goal of this paper is to describe and justify a testing program which will lead to the approval of materials of this kind.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-06-07
    Description: The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.
    Keywords: Nonmetallic Materials
    Type: Third Microgravity Fluid Physics Conference; 377-382; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The trend toward smaller satellites has challenged component manufacturers to reduce the size, weight, and cost of their products while maintaining high performance. Both a new stepper motor and a new harmonic drive were developed to meet this need. The resulting actuator embodies small angle stepper technology usually reserved for larger units and incorporates an integral approach to harmonic drive design. By product simplifications, costs were significantly reduced over prior designs.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 311-316; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-07
    Description: The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 305-310; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-07
    Description: The modification of a multi-jackbolt mechanism, Superbolt(TM), for on-orbit release of highly loaded bolts is described. Preload and release test data demonstrate that modification of a commercial product produced a solution for the deployment of the Space Station Remote Manipulator System (SSRMS) that was less expensive, faster, and lighter than other alternatives. Using the Superbolt design, virtually unlimited bolt loads can be applied or released with a standard wrench.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 299-304; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-07
    Description: The thermal conductance of Hertzian contacts is of great importance to cryogenic spacecraft mechanisms such as the Infra-Red Space Observatory (ISO) and the Far Infra-Red Space Telescope (FIRST). At cryogenic temperatures, cooling of mechanism shafts and associated components occurs via conduction through the bearings. When fluid lubricants are cooled below their pour points, they no longer lubricate effectively, and it is necessary to use low shear strength solid lubricants. Currently, only very limited low temperature data exists on the thermal conductance of Hertzian contacts in both unlubricated and lubricated conditions. This paper reports on measurements of thermal conductance made on stationary ball bearings under cryo-vacuum conditions. Quantitative data is provided to support the development of computer models predicting the thermal conductance of Hertzian contacts and solid lubricants at cryogenic temperatures.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 31-45; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-06-07
    Description: In order to improve the design procedure of constant-torque springs used in aerospace applications, several new analysis techniques have been developed. These techniques make it possible to accurately construct a torque-rotation curve for any general constant-torque spring configuration. These new techniques allow for friction in the system to be included in the analysis, an area of analysis that has heretofore been unexplored. The new analysis techniques also include solutions for the deflected shape of the spring as well as solutions for drum and roller support reaction forces. A design procedure incorporating these new capabilities is presented.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 205-220; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-06-07
    Description: INTA is currently developing a two-degree-of-freedom antenna pointing mechanism (APM) as part of the ESA ENVISAT POLAR PLATFORM (PPF) program. This mechanism will drive a Ka-band antenna within the Data-Relay Satellite System (DRS) on board the Polar Platform satellite. The first mission using PPF is ENVISAT, which is expected to be flown in 1998. This paper describes the main requirements, design, and test results of this pointing system, as well as the main technical problems from customer requirements and how those have been faced to achieve a final design.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 161-175; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-06-07
    Description: Early in 1993, a servo motor within one of three Fine Guidance Sensors (FGS) aboard the Hubble Space Telescope (HST) reached stall torque levels on several occasions. Little time was left to plan replacement during the first servicing mission, scheduled at the end of '93. Accelerated bearing life tests confirmed that a small angle rocking motion, known as Coarse Track (CT), accelerated bearing degradation. Saturation torque levels were reached after approximately 20 million test cycles, similar to the flight bearings. Reduction in CT operation, implemented in flight software, extended FGS life well beyond the first servicing mission. However in recent years, bearing torques have resumed upward trends and together with a second, recent bearing torque anomaly has necessitated a scheduled FGS replacement during the upcoming second servicing mission in '97. The results from two series of life tests to quantify FGS bearing remaining life, discussion of bearing on-orbit performance, and future plans to service the FGS servos are presented in this paper.
    Keywords: Mechanical Engineering
    Type: 30th Aerospace Mechanisms Symposium; 13-29; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Under contract to Jet Propulsion Laboratory, Richard Dudgeon, Inc. developed a heavy lifting load cell system to lift segments of giant antennas in NASA's Deep Space Network. The company commercialized the technology in its Dudgeon High Pressure Ultrathin Pancake Jacks/Hydraulic Load Cells. They are ultralight and ultrathin -- a system weighing 79 pounds can lift 700 tons and can fit between points that measure fractions of an inch. They can be used for bridge weighing/lifting, heavy industrial and turbine weighing/positioning, and weighing/positioning of utilities and power plant equipment.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 100; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: International Machinery Corporation (IMC) developed a miniature earthmover, the 1/8 scale Caterpillar D11N Track-type Tractor, with trademark product approval and manufacturing/marketing license from Caterpillar, Inc. Through Marshall Space Flight Center assistance, the company has acquired infrared remote control technology, originally developed for space exploration. The technology is necessary for exports because of varying restrictions on radio frequency in foreign countries. The Cat D11N weighs only 340 pounds and has the world's first miniature industrial internal combustion engine. The earthmover's uses include mining, construction and demolition work, and hazardous environment work. IMC also has designs of various products for military use and other Caterpillar replicas.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 75; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 101; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Lewis Research Center developed a process for achieving diamond- hard coatings for aerospace systems. The technique involves coating the material with a film of diamond-like carbon (DLC) using direct ion deposition. An ion generator creates a stream of ions from a hydrocarbon gas source; the carbon ions impinge directly on the target substrate and 'grow' into a thin DLC film. In 1988, Air Products and Chemicals, Inc. received a license to the NASA patent. Diamonex, an Air Products spinoff company, further developed the NASA process to create the DiamondHard technology used on the Bausch & Lomb Ray- Ban Survivors sunglasses. The sunglasses are scratch-resistant and shed water more easily, thus reducing spotting.
    Keywords: Nonmetallic Materials
    Type: Spinoff 1996; 74; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Three Sun Coast Chemicals (SCC) of Daytona, Inc. products were derived from NASA technology: Train Track Lubricant, Penetrating Spray Lube, and Biodegradable Hydraulic Fluid. NASA contractor Lockheed Martin Space Operations contacted SCC about joining forces to develop an environmentally safe spray lubricant for the Shuttle Crawler. The formula was developed over an eight-month period resulting in new products which are cost effective and environmentally friendly. Meeting all Environmental Protection Agency requirements, the SCC products are used for applications from train tracks to bicycle chains.
    Keywords: Mechanical Engineering
    Type: Spinoff 1996; 58; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: The bibliography contains citations concerning the design, development, fabrication, and evaluation of thick film electronic devices. Thick film solar cells, thick films for radiation conduction, deposition processes, conductive inks are among the topics discussed. Applications in military and civilian avionics are examined.
    Keywords: Nonmetallic Materials
    Type: PB96-868088 , NASA-TM-96-206733 , NAS 1.15:206733
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: In a similar approach to that used for the previously issued correlation report for Coflon (CAPP/M.10), this report aims to identify any correlations between mechanical property changes and chemical/morphological changes for Tefzel, using information supplied in other MERL and TRI project reports (plus latest data which will be included in final reports for Phase 1). Differences identified with Coflon behaviour will be of scientific interest as well as appropriate to project applications, as Tefzel and Coflon are chemical isomers. Owing to the considerable chemical resistance of Tefzel, much of its testing so far has been based on mechanical properties. Where changes have occurred, chemical analysis can now be targeted more effectively. Relevant test data collated here include: tensile modulus and related properties, permeation coefficients, % crystallinity, and other observations where significant. Fluids based on methanol and amine (Fluid G), a mixture of methane, carbon dioxide and hydrogen sulphide gases plus an aqueous amine solution (Fluid F), and an aromatic oil mix of heptane, cyclohexane, toluene and I-propanol (Fluid 1) have affected Tefzel to varying degrees, and are discussed in some detail herein.
    Keywords: Nonmetallic Materials
    Type: NASA/CR-96-207622 , NAS 1.26:207622 , CAPP/M.13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: Correct pointing direction and scanning motions are essential in the operation of many flight payloads, such as balloon-borne telescopes and space-based X- ray and gamma-ray telescopes. Rotating unbalanced mass (RUM) devices have been recently proposed, implemented and successfully tested to produce a variety of scanning motions. Linear scans, raster scans, and circular scans have been successfully generated on a gimbaled payload using pairs of RUM devices. Theoretical analysis, computer simulations, and experiments have also been used to study the feasibility of using RUM devices to control instrument pointing direction, in addition to generating scanning motion. Dynamic modeling of a gimbaled payload equipped with a pair of RUM devices has been studied, and preliminary testing indicates that the pointing control is indeed feasible. However, there is also great potential for significant performance improvements through more advanced control system analysis, modeling and design. In this paper, modeling and control methods are described to achieve simultaneous scanning and pointing control of a gimbaled payload using rotating unbalance mass (RUM) devices. The model development work builds upon the results of Polites et al. and also some modeling approaches from robotics research. Results of some preliminary experiments are discussed and some nonlinear control methods will be proposed.
    Keywords: Mechanical Engineering
    Type: NASA-TM-112521 , NAS 1.15:112521 , AAS-97-065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: A two phase HfB2-SiB4 material which is useful as a high temperature oxidation resistant coating. This invention relates to ceramic coatings and more particularly to ceramic coatings containing metal borides. Boride materials are known to have good oxidation resistance, with HfB2 considered to be the best pure boride for oxidation applications. It has been shown that the addition of 10 to 20 percent SiC to HfB2 increases the oxidation resistance. The HfB2-SiC materials are prepared by hot pressing powder mixtures. Hot pressing powder mixtures has limited ability to produce fine grained multiphase materials due to particle coarsening during the sintering process. Additionally, the purity of the final monolithic structure is limited to the purity of the starting powders. Chemical vapor deposition (CVD) offers a method of producing highly pure multiphase ceramics, with better control of microstructure. Researchers have tried to produce HfB2-SiC coatings by CVD but without success.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-112844 , NAS 1.15:112844
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: A robot manipulator controller for a flexible manipulator arm having plural bodies connected at respective movable hinges and flexible in plural deformation modes corresponding to respective modal spatial influence vectors relating deformations of plural spaced nodes of respective bodies to the plural deformation modes, operates by computing articulated body quantities for each of the bodies from respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables, and computing modal deformation accelerations and hinge accelerations is carried out for each one of the bodies beginning with the outermost body by computing a residual body force from a residual body force of a previous body and from the vector of deformation and hinge configuration variables, computing a resultant hinge acceleration from the body force, the residual body force and the articulated hinge inertia, and revising the residual body force modal body acceleration.
    Keywords: Mechanical Engineering
    Type: NASA-Case-NPO-18499-1-CU
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce 'contour preforms'. All of the contour preforms on this first-of-a-kind effort were imperfect, and the ingot used to fabricate two of the preforms was of an earlier vintage. As lessons were learned throughout the program, the tooling and procedures evolved, and hence the preform quality. Two of the best contour preforms were near- net forged to produce a process pathfinder Y-ring adapter and a 'mechanical properties pathfinder' Y-ring adapter. At this point, Lockheed Martin Astronautics elected to procure additional 2195 aluminum-lithium ingot of the latest vintage, produce two additional preforms, and substitute them for older vintage material non-perfectly filled preforms already produced on this contract. The existing preforms could have been used to fulfill the requirements of the contract.
    Keywords: Mechanical Engineering
    Type: NASA-CR-203935 , NAS 1.26:203935 , NNF-DOC-014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: This paper details a comparison analysis of the zinc oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 years in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent sun hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-108518 , NAS 1.15:108518
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Cylindrical, sliding contact bearings made entirely of a self-lubricating powder metallurgy composite (PM212) or of super alloy shells lined with clad PM212 were tested in an oscillating mode at temperatures from 25 to 700 C. Tests of 100 hr duration or longer were conducted at a bearing unit load of 3.45 Mpa (500 psi). Shorter duration tests at various unit loads up to 24.1 Mpa (3500 psi) were also conducted. In comparison tests, bearings lubricated with PM212 had superior anti-wear characteristics compared to the baseline, unlubricated, super alloy bearings: no galling of PM212-lubricated bearings occurred, while severe surface damage including galling occurred, especially at high loads, during the baseline tests. A heat treatment procedure, which dimensionally stabilizes PM212 and thereby minimizes clearance changes during high temperature bearing operation, is described.
    Keywords: Mechanical Engineering
    Type: NASA-TM-107307 , NAS 1.15:107307 , E-10396
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: A tribometer for the evaluation of liquid lubricants in vacuum is described. This tribometer is essentially a thrust bearing with three balls and flat races having contact stresses and ball motions similar to those in an angular contact ball bearing operating in the boundary lubrication regime. The friction coefficient, lubrication lifetime, and species evolved from the liquid lubricant by tribodegradation can be determined. A complete analysis of the contact stresses and energy dissipation together with experimental evidence supporting the analysis are presented.
    Keywords: Nonmetallic Materials
    Type: NASA-TP-3629 , NAS 1.60:3629 , E-10309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.
    Keywords: Nonmetallic Materials
    Type: NASA-CR-202378 , NAS 1.26:202378
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: A method is provided for closing out the edges of a flexible ceramic insulation member including inner and outer mold line covering layers. A rigid, segmented, ceramic frame is placed round the edges of the insulation member and exposed edges of the inner and outer mold line covering layers are affixed to the ceramic frame. In one embodiment wherein the covering layers comprise fabrics, the outer fabric is bonded to the top surface and to grooved portion of the side surface of the frame. In another embodiment wherein the outer cover layer comprises a metallic foil, clips on the edges of the frame are used to engage foil extensions. The ceramic frame is coated with a high emittance densifier coating.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: Understanding interfacial microstructural evolution during environmental testing and use is critical to the development of stable continuous fiber ceramic composites (CFCC's) for their use in 'corrosive' environments. The use of advanced characterization techniques is required to track subtle microstructural changes. These techniques must be coordinated with other CFCC tasks to completely evaluate their interfacial behavior.
    Keywords: Nonmetallic Materials
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 165-195; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration isolation system, where the magnetic actuator geometry resembles a conventional magnetic bearing. Magnetostatic computations provide estimates of flux density within airgaps and the iron core material, fringing at the pole faces and the net force generated. Eddy current computations provide coil inductance, power dissipation and the phase lag in the magnetic field, all as functions of excitation frequency. Here, the dynamics of the magnetic bearings, notably the rise time of forces with changing currents, are found to be very strongly affected by eddy currents, even at quite low frequencies. Results are also compared to experimental measurements of the performance of a large-gap magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Eddy current effects are again shown to significantly affect the dynamics of the system. Some consideration is given to the ease and accuracy of computation, specifically relating to OPERA/TOSCA/ELEKTRA.
    Keywords: Mechanical Engineering
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 707-719; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-107254 , E-10312 , NAS 1.15:107254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 357-360; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: A major limitation in use of electromagnetic and/or magnetomechanical models for design of Terfenol-D actuators is the lack of reliable material property data for Terfenol-D. In particular data on the performance of Terfenol-D as employed in a transducer, operating under real world dynamic conditions is needed. To provide this information, Terfenol-D rod properties need to be measured under as run prestressed and magnetically biased states. Using a Terfenol-D actuator, the following properties can be measured and/or calculated: mechanical quality factor, speed of sound in the material, the resonant frequency, the anti-resonant frequency, two magnetic permeabilities (one at constant stress and one at constant strain), two Young's moduli (one at constant amplitude applied magnetic field and one at constant amplitude magnetic flux density in the material), the magnetomechanical coupling, and the axial strain coefficient. The development of the material properties measurements and calculations is based on the model of low signal, linear, magnetostriction from Clark, the linear transduction equations for a transducer from Hunt, and a one degree of freedom mechanical model of the transducer. The electrical impedance and admittance mobility loops are used to determine the resonant, anti-resonant, and half power point frequencies. The rest of the material properties indicated above can then be calculated using these frequencies, acceleration from an accelerometer mounted on the actuator arm, and readily measurable transducer and Terfenol-D rod parameters.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 353-356; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: An analytical assessment has been made of the reliability of using integrated microactuators and sensors in the form of piezoceramics and piezopolymers as joint integrity monitors in trussed systems. The concept is first implemented for a simple structure which consists of two truss members with a 45 deg lift angle joined at the apex. A piezoceramic patch (or piezopolymer film) bonded on the surface of one of the members at a location near the joint is used as a collocated actuator/sensor. The overall structural dynamic response under an excitation was modeled by finite element method. Different degrees of nodal constraints at the joints representing various degrees of joint integrity are employed. The resulting dynamic response showed distinct responses for varying joint stiffnesses. Parallel experimental work on a truss model using a multichannel data acquisition system and a digital signal analyzer confirms the results from analysis. We further studied the sensitivity of the micro-sensors to the behavior of joints of large arch truss structure. Results obtained for large trusses with many degrees of freedom indicate optimum locations of sensors for which the dynamic response signatures are distinct and distinguishable for relatively small changes in joint integrity and/or structural geometry. Computations based on finite element modeling show that locating the single actuator/sensor at the joint corresponding to the first loss of static stability appear optimal. Hence, static stability analysis of complex trusses can give us a good indication of the optimum placement of sensors for maximum response. This observation is important if few distributed sensors and actuators are available for placement in constructed facilities made from large trusses with many degrees of freedom. As an extension of this work a dynamic response signature identification technique to monitor in-service degradation of joints is under development for application to the monitoring of the integrity of adhesive joints in composite structures.
    Keywords: Nonmetallic Materials
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 325-328; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This chapter presents an introduction and historical background to the field of tribology, especially solid lubrication and lubricants and sets them in the perspective of techniques and materials in lubrication. Also, solid and liquid lubrication films are defined and described.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-107249-Ch-1 , E-9863-Ch-1 , NAS 1.15:107249-Ch-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...