ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (21,552)
  • Inorganic Chemistry  (1,210)
  • Fluid Mechanics and Heat Transfer
  • 1995-1999  (22,101)
  • 1950-1954
  • 1999  (1,573)
  • 1997  (9,744)
  • 1996  (10,784)
Collection
Publisher
Years
  • 1995-1999  (22,101)
  • 1950-1954
Year
  • 1
    Publication Date: 2004-12-03
    Description: Propulsion performance and operability are key factors in the development of a successful aircraft. For high-speed supersonic aircraft, mixed-compression inlets offer high performance but are susceptible to an instability referred to as unstart. An unstart occurs when a disturbance originating in the atmosphere or the engine causes the shock system to be expelled from the inlet. This event can have adverse effects on control of the aircraft, which is unacceptable for a passenger plane such as the high speed civil transport (HSCT). The ability to predict the transient response of such inlets to flow perturbations is, therefore, important to the proper design of the inlet and the control measures used to prevent unstart. Computational fluid dynamics (CFD) is having an increasing role in the analysis of individual propulsion components. Isolated inlet studies are relatively easy to perform, but a major uncertainty is the boundary condition used at the inlet exit to represent the engine - the so-called compressor face boundary condition. A one-dimensional (1-D) Euler inlet simulation showed that the predicted inlet unstart tolerance to free-stream pressure perturbations can vary by as much as a factor of about six, depending on the boundary condition used. Obviously a thorough understanding of dynamic interactions between inlets and compressors/fans is required to provide the proper boundary condition. To aid in this understanding and to help evaluate possible boundary conditions, an inlet-engine experiment was conducted at the University of Cincinnati. The interaction of acoustic pulses, generated in the inlet, with the engine were investigated. Because of the availability of experimental data for validation, it was decided to simulate the experiment using CFD. The philosophy here is that the inlet-engine system is best simulated by coupling (existing) specialized CFD component-codes. The objectives of this work were to aid in a better understanding of inlet-compressor interaction physics and the formulation of a more realistic compressor-face boundary condition for time-accurate CFD simulations of inlets. Previous simulations have used 1-D Euler engine simulations in conjunction with 1-D Euler and axisymmetric Euler inlet simulations. This effort is a first step toward CFD simulation of an entire engine by coupling multidimensional component codes.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: HPCCP/CAS Workshop Proceedings 1998; 189-195; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: A study of the spray of a swirl coaxial gas-liquid injector operating at high gas to liquid momentum ratios is reported. Mixing and droplet size characteristics of the swirl injector are also compared to a shear coaxial injector, currently being used in the Space Shuttle Main Engine fuel preburner. The injectors were tested at elevated chamber pressures using water as a LOX simulant and nitrogen and helium as gaseous hydrogen simulants. The elevated chamber pressure allowed for matching of several of the preburner injector conditions including; gas to liquid momentum ratio, density ratio and Mach number. Diagnostic techniques used to characterize the spray included; strobe back-light imaging, laser sheet spray imaging, mechanical patternation, and a phase Doppler interferometry. Results thus far indicate that the radial spreading of the swirl coaxial spray is much less than was reported in previous studies of swirl injectors operating at atmospheric back-pressure. The swirl coaxial spray does, however, exhibit a smaller overall droplet size which may be interpreted as an increase in local mixing.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: ODU/ICAM-99-101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: In order to expand the predictive capability of single-point turbulence closure models to account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. First the decay of laminar disturbances and turbulence in mean shear-free flows is studied. In laminar flows, such disturbances are linear superpositions of modes governed by the Orr-Sommerfeld equation. In turbulent flows, disturbances are described through transport equations for representative mean quantities. The link between a description based on a deterministic evolution equation and a probability based mean transport equation is established. Because an uncertainty in initial conditions exists in the laminar as well as the turbulent regime, a probability distribution must be defined even in the laminar case. Using this probability distribution, it is shown that the exponential decay of the linear modes in the laminar regime can be related to a power law decay of both the (ensemble) mean disturbance kinetic energy and the dissipation rate. The evolution of these mean disturbance quantities is then described by transport equations similar to those for the corresponding turbulent decaying flow. Second, homogeneous shear flow, where disturbances can be described by rapid distortion theory (RDT), is studied. The relationship between RDT and linear stability theory is exploited in order to obtain a closed set of modeled equations. The linear disturbance equations are solved directly so that the numerical simulation yields a database from which the closure coefficients in the ensemble-averaged disturbance equations can be determined.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: ODURF-191141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The thermocapillary motion of drops in zero gravity is analyzed numerically. When convective transport is important, the internal circulation in the drop has a profound effect on the temperature distribution in its vicinity and hence on its migration speed. For sufficiently large values of the Marangoni number number Ma, for steady motion of the drop, the temperature difference on the drop surface and its scaled speed increase with Ma. This is in contrast to (1) existing computational results for liquid drops whose scaled speed decreases with Ma and (2) asymptotic results for gas bubbles whose scaled speed is independent of Ma when it is large.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Numerical Heat Transfer (ISSN 1040-7782); 35; Part A; 291-309
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio 〉 1 and the ratio of orifices-area-to-mainstream- cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: International Gas Turbine and Aeroengine Congress and Exhibition; Jun 02, 1997 - Jun 05, 1997; Orland, FL; United States|Journal of Engineering for Gas Turbines and Power; 121; 551-562
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozz1e exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same rate configuration, which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics is examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Paper-97-GT-257 , Journal of Engineering for Gas Turbines and Power; 121; 235-242|International Gas Turbine and Aeroengine Congress and Exhibition; Jun 02, 1997 - Jun 05, 1997; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The temporal evolution of combustion flowfields established by the interaction between wedge-shaped bodies and explosive hydrogen-oxygen-nitrogen mixtures accelerated to hypersonic speeds in an expansion tube is investigated. The analysis is carried out using a fully implicit, time-accurate, computational fluid dynamics code that we developed recently for solving the Navier-Stokes equations for a chemically reacting gas mixture. The numerical results are compared with experimental data from the Stanford University expansion tube for two different gas mixtures at Mach numbers of 4.2 and 5.2. The experimental work showed that flow unstart occurred for the Mach 4.2 cases. These results are reproduced by our numerical simulations and, more significantly, the causes for unstart are explained. For the Mach 5.2 mixtures, the experiments and numerical simulations both produced stable combustion. However, the computations indicate that in one case the experimental data were obtained during the transient phase of the flow; that is, before steady state had been attained.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209304 , AIAA Paper 99-2640 , NAS 1.26:209304 , ICOMP-99-06 , E-11825 , Joint Propulsion; Jun 20, 1999 - Jun 24, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209310 , NAS 1.26:209310 , E-11859
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This paper presents the application of the Generalized Fluid System Simulation Program (GFSSP) to model the time-dependent flow in a complex secondary flow circuit of the turbopump of the Fastrac engine currently under development at Marshall Space Flight Center. GFSSP is a general purpose computer program for analyzing steady-state and time-dependant flowrates, pressures, temperatures, and concentrations in a complex flow network. The program employs a finite volume formulation of mass, momentum and energy conservation equations in conjunction with the thermodynamic equation of state of real fluids. GFSSP was used to calculate the axial thrust and internal flow distribution of the Fastrac engine turbopump during the start and shut down transients. The models discussed in this paper use boundary conditions that were extracted from turbopump test data. The GFSSP predicted turbopump secondary flow passage pressures and temperatures were compared with actual measured values.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Joint Propulsion; Jun 21, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: The research period under the sponsorship of NAG1-1911 is two years: from Feb. 1, 1997 to Jan. 31, 1999 (extended no-cost to April 30, 1999). During the two-year research period, deliverables have included brief monthly progress statements, annual reports and subroutines of computational programs. Several technical papers have been published and are attached to this final report. This Summary of Research contains a brief description of those research results and refers the details to each attached paper.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: In order to expand the predictive capability of single-point turbulence closure models too account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. The calibration is based on homogeneous shear flow where disturbances can be described by rapid distort,ion theory (RDT). The relationship between RDT and linear stability theory is exploit,c d in order to obtain a closed set, of modeled equations. The linear disturbance equations are solved directly so that, the numerical simulation yields a database from which the closure coefficient,s in the ensemble-averaged disturbance equations can he determined.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Turbulence and Shear Flow Phenomena; Sep 12, 1999 - Sep 15, 1999; Santa Barbara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: RTO-EN-5 , Higher Order Discretization Methods in Computational Fluid Dynamics; Sep 21, 1998 - Sep 25, 1998; Moffett Field, CA; United States|Higher Order Discretization Methods in Computational Fluid Dynamics; Sep 14, 1998 - Sep 15, 1998; Rhode-Saint-Genese; Belgium
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The Space Shuttle Main Engine (SSME) Fuel Flowmeter is located in the duct between the low and high pressure fuel turbopumps. In the flowmeter the rotation rate of a 4-blade rotor positioned downstream of two flow straighteners is employed to measure the engine fuel flow rate and thereby control the engine mixture ratio via the engine controller. Hence, inaccurate operation of the flowmeter could have serious consequences for SSME engine operation and performance, forcing, for example, tanking of extra fuel to allow for inaccurate flowmeter measurement. Since the current flight flowmeter configuration was incorporated into the SSME in the early eighties, some anomalies in flowmeter behavior have been observed. The initial flowmeter incorporated an "egg crate" design for the two flow straighteners which turn the duct flow to make it more uniform and parallel after it has come out of the 90 degree bend just upstream of the flowmeter.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Jun 01, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: ODURF-182431
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-17
    Description: Hear and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a def@ned flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to ST and in transverse rotating magnetic fields up to 7.S mT. Static fields of a few 100 MT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, is possible with static fields ? 1T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelec:romagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few mT. The field shifts time-dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-17
    Description: A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-17
    Description: An existing injector optimization methodology, method i, is used to investigate optimal design points for a GO2/GH2 impinging injector element. The impinging element, an F-O-F triplet, is optimized in terms of such relevant design variables as fuel pressure drop, DELTA-P(sub f), oxidizer pressure drop, DELTA-P(sub o), combustor length, L(sub comb), and impingement angle, alpha, for a given mixture ratio and chamber pressure.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Thermal and Fluids Analysis Workshop; Sep 13, 1999 - Sep 17, 1999; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-17
    Description: Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Thermal and Fluids Analysis; Sep 13, 1999 - Sep 17, 1999; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-17
    Description: A program began ten years ago to build a turbulence model to describe high Reynolds numbers flows. Specifically, the aim was to devise a model that would satisfy two basic conditions: reproduce available turbulence data (laboratory, numerical simulations, etc.) concerning shear driven flows, buoyancy driven flows, 2D turbulence, freely decaying turbulence etc., and yet be manageable so as to be used, for example, in General Circulation Models (GCM'S). The model was presented in a series of papers that have appeared in Physics of Fluids since 1996. A total of about 80 turbulence statistics were reproduced. The model has no adjustable parameters. The next step was to apply the model to construct the vertical diffusities K for moment K(sub m), temperature K(sub h), salt K(sub s). and passive scalars K(sub c). First, we took K(sub s) = K(sub h) and tested the model using the GFDL ocean model. The results for the profiles of T and S vs. depth are indistinguishable from those derived using the latest model, the KPP model by the NCAR group. Presently, we are running the same Geophysical Fluid Dynamics Laboratory (GFDL) code relaxing the assumptive K(sub s) = K(sub h). Indeed, the turbulence model yields a salt diffusivity that depends on Ri and R rho (= Beta delta S/delta z/alpha delta T/delta z) in such a way that K(sub s) may be quite different from K(sub h). Salt fingers and double diffusivity laboratory data are reproduced. Results from the ocean model will be available shortly. Finally, we are trying to derive the horizontal diffusivities with the goal of providing a physically acceptable representation of mesoscale eddies. The recently suggested GMW parameterization has improved several O-GCM results and the goal here is to try to derive/justify it from a turbulence model and/or propose improvements/modifications. Theoretical work is in progress.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: May 08, 1999 - May 17, 1999; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The onset of steady and time-dependent flows were measured in a cylinder of liquid gallium subjected to a vertical temperature gradient and a horizontal rotating magnetic field (RMF). By varying the applied vertical temperature gradients and the strength of the applied magnetic field, a stability diagram in Rayleigh number - Hartmann number parameter space was constructed. The application of a RMF increased the critical value of the Rayleigh number by up to a factor of 10. However, there was observed a critical value of the Hartmann number where instability set in, regardless of the value of the Rayleigh number. Significant hysteresis in the value of the critical Rayleigh number was observed depending on whether the applied thermal gradient was increasing or decreasing.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Mar 21, 1999 - Mar 26, 1999; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-17
    Description: A program began ten years ago to build a turbulence model to describe high Reynolds numbers flows. Specifically, the aim was to devise a model that would satisfy two basic conditions: reproduce available turbulence data (laboratory, numerical simulations, etc.) concerning shear driven flows, buoyancy driven flows, 2D turbulence, freely decaying turbulence etc., and yet be manageable so as to be used, for example, in GCM'S. The model was presented in a series of papers that have appeared in Physics of Fluids since 1996. A total of about 80 turbulence statistics were reproduced. The model has no adjustable parameters. The next step was to apply the model to construct the vertical diffusities K for moment K(sub m), temperature K(sub h), salt K(sub s), and passive scalars K(sub c). First, we took K(sub c) = K(sub h) and tested the model using the GFDL ocean model. The results for the profiles of T and S vs. depth are indistinguishable from those derided using the latest model, the KPP model by the NCAR group. Presently, we are running the same GFDL code relaxing the assumptive K(sub c) = K(sub h). Indeed, the turbulence model yelds a salt diffusivity that depends on R(sub i) and R(sub rho) = ((beta)(delta)S/(alpha)(delta)T/(delta)z) in such a way that K(sub s) may be quite different from K(sub h). Salt fingers and double diffusivity laboratory data are reproduced. Results from the ocean model will be available shortly. Finally, we are trying to derive the horizontal diffusivities with the goal of providing a physically acceptable representation of mesoscale eddies. The recently suggested GMW parameterization has improved several O-GCM results and the goal here is to try to derive/justify it from a turbulence model and/or propose improvements/modifications. Theoretical work is in progress.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Apr 19, 1999 - Apr 23, 1999; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-15
    Description: We investigate the phenomenon of acoustic pressure-induced nucleation by using a novel approach involving the large amplitude resonant radial oscillations and collapse of a single bubble intentionally injected into a supercooled liquid. Using a combination of previously developed and proven techniques, the bubble is suspended in a fluid host by an ultrasonic field which supplies both the levitation capability as well as the forcing of the radial oscillations. We observe the effects of an increase in pressure (due to bubble collapse) in a region no larger than 100 microns within the supercooled melt to rigorously probe the hypothesis of pressure-induced nucleation of the solid phase. The use of single bubbles operating in narrow temporal and spatial scales will allow the direct and unambiguous correlation between the origin and location of the generation of the disturbance and the location and timing of the nucleation event. In a companion research effort, we are developing novel techniques for the non-contact measurements of the surface tension and viscosity of highly viscous supercooled liquids. Currently used non-invasive methods of surface tension measurement for the case of undercooled liquids generally rely of the quantitative determination of the resonance frequencies of drop shape oscillations, of the dynamics of surface capillary waves, or of the velocity of streaming flows. These methods become quickly ineffective when the liquid viscosity rises to a significant value. An alternate and accurate method which would be applicable to liquids of significant viscosity is therefore needed. We plan to develop such a capability by measuring the equilibrium shape of levitated undercooled melt droplets as they undergo solid-body rotation. The experimental measurement of the characteristic point of transition (bifurcation point) between axisymmetric and two-lobed shapes will be used to calculate the surface tension of the liquid. Such an approach has already been validated through the experimental verification of numerical modeling results. The experimental approach involves levitation, melting, and solidification of undercooled droplets using a hybrid ultrasonic-electrostatic technique in both a gaseous as well as a vacuum environment. A shape relaxation method will be investigated in order to derive a reliable method to measure the viscosity of undercooled melts. The analysis of the monotonic relaxation to equilibrium shape of a drastically deformed and super-critically damped free drop has been used to derive interfacial tension of immiscible liquid combinations where one of the component has high viscosity. A standard approach uses the initial elongation of a droplet through shear flows, but an equivalent method could involve the initial deformation of a drop levitated in a gas by ultrasonic radiation pressure, electric stresses, or even solid body rotation. The dynamic behavior of the free drop relaxing back to equilibrium shape will be modeled, and its characteristic time dependence should provide a quantitative means to evaluate the liquid viscosity.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA Microgravity Materials Science Conference; 629-634; NASA/CP-1999-209092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-28
    Description: The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: PB99-166142
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Three-dimensional Navier-Stokes simulations of the Crow instability of wake vortices are conducted using large-eddy simulations without background turbulence. Sinusoidal displacement has been specified as the initial perturbation for the vortex system. The results have shown that the minimum Crow instability wavelength is about one vortex spacing shorter than predicted by Crow's linear stability theory. The planar- standing-wave-angle value and the amplitude indifference behavior agree with Crow's analysis. Simulations with periodicity in the axial direction have indicated minor influence of axial flow on the Crow instability.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: AIAA Paper 99-0981 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox's k-omega model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and omega distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209301 , NAS 1.26:209301 , E-11776 , Turbo Expo ''99; Jun 07, 1999 - Jun 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: Anomalous behavior manifested in the apparent SSME fuel flowmeter constant which relates the rotor speed to the engine flowrate has been shown to be the result of wakes of the upstream hexagonal web flow straightener periodically stalling the rotor blades, thereby changing the lift on the blades and the rotation speed of the rotor. Moreover, an unsteady, two-dimensional computational fluid dynamics model of the flowmeter has shown this wake-induced stall disappearing as the straightener-rotor distance is doubled, in accord with the existing SSME flowmeter database for the previous "egg crate" flowmeter. These observations have led to a new flowmeter design which has been shown in three-dimensional CFD computations (consistent with both the previous two-dimensional analyses and with existing correlations for airfoil stall) to be much less susceptible to stalling instabilities.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Propulsion; Jun 01, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: This document in large part is based on the Masters Thesis of Cole Stephens. The document encompasses a variety of technical and practical issues involved when using the STARS codes for Aeroservoelastic analysis of vehicles. The document covers in great detail a number of technical issues and step-by-step details involved in the simulation of a system where aerodynamics, structures and controls are tightly coupled. Comparisons are made to a benchmark experimental program conducted at NASA Langley. One of the significant advantages of the methodology detailed is that as a result of the technique used to accelerate the CFD-based simulation, a systems model is produced which is very useful for developing the control law strategy, and subsequent high-speed simulations.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The interdisciplinary field of reactive flow control is one that holds a great deal of promise for the optimization of complex phenomena occurring in many practical systems, ranging from automobile and gas turbine engines to environmental thermal destruction systems. The fundamental underpinnings of combustion control, however, require a detailed level of understanding of complex reactive flow phenomena, and, in the case of closed-loop active control, require the ability to sense (monitor) and actuate (manipulate) flow processes in a spatially distributed manner in "near real time". Hence the ultimate growth and success of the field of reactive flow control is intimately linked: 1) to advances in the understanding, simulation, and model reduction for complex reactive flows, 2) to the development of experimental diagnostic techniques, in particular, to the development of physically robust sensors, and 3) to the development of a framework or frameworks for generation of closed loop control algorithms suitable for unsteady, nonlinear reactive flow systems. The present paper seeks to outline the potential benefits and technical challenges that exist for mixing and combustion control in fundamental as well as practical systems and to identify promising research directions that could help meet these challenges.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: AIAA Paper 99-3572 , Fluid Dynamics; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Reported here are our results of our numerical/theoretical investigation into the effects of thermal stress in nonisothermal gases under microgravity conditions. The first part of the report consists of a brief summary of the accomplishments and conclusions of our work. The second part consists of two manuscripts, one being a paper presented at the 1998 MSAD Fluid Physics workshop, and the other to appear in Physics of Fluids.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (〉1OOMW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip were considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209151/PT2 , NAS 1.26:209151/PT2 , E-11656/PT2 , ASME 99-GT-283/PT2 , Gas Turbine and Aeroengine Congress, Exposition; Jun 07, 1999 - Jun 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: A comparison of the NPARC, PAB, and WIND (previously known as NASTD) Navier-Stokes solvers is made for two flow cases with turbulent mixing as the dominant flow characteristic, a two-dimensional ejector nozzle and a Mach 1.5 elliptic jet. The objective of the work is to determine if comparable predictions of nozzle flows can be obtained from different Navier-Stokes codes employed in a multiple site research program. A single computational grid was constructed for each of the two flows and used for all of the Navier-Stokes solvers. In addition, similar k-e based turbulence models were employed in each code, and boundary conditions were specified as similarly as possible across the codes. Comparisons of mass flow rates, velocity profiles, and turbulence model quantities are made between the computations and experimental data. The computational cost of obtaining converged solutions with each of the codes is also documented. Results indicate that all of the codes provided similar predictions for the two nozzle flows. Agreement of the Navier-Stokes calculations with experimental data was good for the ejector nozzle. However, for the Mach 1.5 elliptic jet, the calculations were unable to accurately capture the development of the three dimensional elliptic mixing layer.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209184 , E-11693 , NAS 1.15:209184 , AIAA Paper 99-0748 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: A series of detailed non-intrusive laser velocimeter flow field surveys were performed to validate computational fluid dynamic (CFD) codes for rotating pump components. Three component laser-2-focus (L2F) laser velocimetry was used to acquire data within a flow passage of a diffuser at design flow conditions. The thirteen vane-island type diffuser was designed to allow diffusion in the axial direction. Multiple laser velocimeter surveys were performed throughout several diffuser passages and at multiple diffuser depths (hub to shroud). The axial (3D) component of the velocity at all locations was small. The radial and meridional velocity components nearest the diffuser hub increased in magnitude relative to the flow nearest the shroud as the flow progressed through the diffuser. A continuity check across the diffuser throat and based on the meridional velocity component yielded a match with a facility flow meter of 98.0%.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: FEDM99-6985 , Joint Fluids Engineering; Jul 18, 1999 - Jul 23, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: A linear spatial instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. It is assumed that in the region of interest a coherent wave can propagate. For the case studied large spatial growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech and edge tone feedback locked subsonic jets. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a coherent wave can propagate. The large spatial growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of spacial growth rates will be presented for a set of relative Mach numbers and spacings for which experimental measurements have been made. Calculations of spatial growth rates are presented for relative Mach numbers from 1.25 to 1.75 with ratios of nozzle spacing to nozzle width ratios from s/w(sub N) = 4 to s/w(sub N) = 13.7. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208818 , E-11421 , NAS 1.15:208818 , AIAA Paper 99-0082 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: The temperature hysteresis phenomenon of a Loop Heat Pipe (LHP) was experimentally investigated. The temperature hysteresis was identified by the fact that the operating temperature depends upon not only the imposed power but also the previous history of the power variation. The temperature hysteresis could impose limitations on the LHP applications since the LHP may exhibit different steady-state operating temperatures at a given power input even when the condenser sink temperature remains unchanged. In order to obtain insight to this phenomenon, a LHP was tested at different elevations and tilts by using an elaborated power profile. A hypothesis was suggested to explain the temperature hysteresis. This hypothesis explains well the experimental observations. Results of this study provide a better understanding of the performance characteristics of the LHPS.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: National Heat Transfer; Aug 15, 1999 - Aug 17, 1999; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208501 , NAS 1.15:208501 , E-11300 , Gas Turbine and Aeroengine Congress; Jun 02, 1998 - Jun 05, 1998; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level of convective flow is introduced into the system. A new novel variation of the Lorentz force mechanism is proposed and investigated in this study. Since one of the desired process conditions in melt crystal growth is the minimization of convective effects, this investigation examines the use of an external field of magnetic origin to counteract existing convective flow within the melt. This is accomplished by utilizing a running or traveling axial magnetic wave in the system. The concept is similar to the use of vibrational means in order to induce streaming flows that oppose buoyant or surface tension driven convection in the system. The rotation direction as well as the magnitude (strength) of this circulation can be easily controlled by external inputs thus affording a direct means of controlling the developing shape of the crystallizing front (interface). The theoretical model of this technique is fully developed and presented in this paper. Results from the solution of the developed governing equations and boundary conditions are also presented. An experimental demonstration of the concept is presented through the suppression of natural convective flow in a mercury column. Implications to crystal growth systems will be fully explored in the final manuscript.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods [1-6]. Dilitometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics [7]. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov [8]. The advantage of these experiments is that the samples are directly observable. The nucleation temperature can be measured by noncontact optical pyrometry, the mass of the sample is known, and post processing analysis can be conducted on the sample. The disadvantages are that temperature measurement must have exceptionally high precision, and it is not possible to isolate specific heterogeneous sites as in droplet dispersions.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: This report summarizes the research undertaken, at Aeronautics Department of the Massachusetts Institute of Technology, during the approximately five year period, February 94 - March 99. This work is part of a larger effort aimed at providing a reliable fast turn around capability for the prediction of hypersonic flows over complete vehicle configurations.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The present study uses two dimensional numerical simulations to study unsteady low-Reynolds-number separation bubbles. The numerical study is in two parts: (1) a two dimensional time-accurate Navier-Stokes solver is used to simulate flows over the APEX airfoil, and (2) a numerical procedure is developed for localized simulations of transitional separation bubbles. The 2-D computations of flow over the APEX airfoil show that the flow is unsteady with periodic vortex shedding. A linear stability analysis of the separated flow shows that the vortex shedding is caused due to the instability of the separated flow. For transonic flows over the APEX airfoil the vortex shedding is additionally influenced by the presence of shocks. The flowfield has two characteristic time scales, one corresponding to the vortex shedding and another corresponding to the movement of the shocks. The two dimensional (2-D) airfoil simulations also showed the presence of nonlinear effects in the separated region. To better understand the characteristics of separation bubbles a numerical procedure has been developed for localized separation bubble calculations. This procedure is used to perform computations for a flat plate separation bubble test case. The separation bubble is induced by specifying a velocity gradient in the freestream. The growth of disturbances in the separation bubble is analyzed by introducing disturbances upstream of the separation bubble.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: AIAA Paper 99-0523 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-206570 , NAS 1.15:206570 , H-2285 , AIAA Paper 99-0789 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: A multiblock, three-dimensional Navier Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VKI rotor, and the main flow over the blade. A multiblock grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VKI rotor the shower-head holes are inclined at 30 deg to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the span-averaged heat transfer coefficient on the blade surface with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: ASME Paper 98-GT-404 , International Journal of Heat and Fluid Flow (ISSN 0142-727X); 20; 10-25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: This article describes the application of the Multidisciplinary Analysis (MDA) solver, Spectrum, in analyzing a hydrogen-cooled hypersonic cowl leading-edge structure. Spectrum, a multiphysics simulation code based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling, as well as the interactions between these disciplines. Fluid-solid-thermal interactions in a hydrogen impingement-cooled leading edge are predicted using Spectrum. Two- and semi-three-dimensional models are considered for a leading edge impingement coolant, concept under either specified external heat flux or aerothermodynamic heating from a Mach 5 external flow interaction. The solution accuracy is demonstrated from mesh refinement analysis. With active cooling, the leading edge surface temperature is drastically reduced from 1807 K of the adiabatic condition to 418 K. The internal coolant temperature profile exhibits a sharp gradient near channel/solid interface. Results from two different cooling channel configurations are also presented to illustrate the different behavior of alternative active cooling schemes.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209275 , NAS 1.15:209275 , E-11731 , AIAA Paper 99-3510 , 1999 Norfolk Summer Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Turbo Expo; Jun 07, 1999 - Jun 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: AIAA Paper 99-4911 , Weakly Ionized Gases; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States|International Space Planes and Hypersonic Systems and Technoogies; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The Near Infrared Camera and Multi Object Spectrometer (NICMOS) was installed in the Hubble Space Telescope (MST) in February 1997. Shortly thereafter, the instrument experienced a thermal short in its solid nitrogen dewar system which will significantly shorten the instrument's useful life. A reverse Brayton cycle mechanical refrigerator will be installed during the Third Servicing Mission (SM3) to provide cooling for the instrument, and thereby extend its operations. A Capillary Pump Loop (CPL) and radiator system was designed, built and tested to remove up to 500 watts of heat from the mechanical cryocooler and its associated electronics. The HST Orbital Systems Test (HOST) platform was flown on the Space Shuttle Discovery (STS-95) as a flight demonstration of the cryocooler system, CPL control electronics, and the CPL/Radiator. This paper will present the flight test results and thermal performance of the CPL system in detail.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 99ES-85 , Environmental Systems; Jul 12, 1999 - Jul 15, 1999; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208900 , NAS 1.15:208900 , E-11499 , AIAA Paper 99-0094 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Detailed heat transfer measurements and predictions are given for a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. Data were obtained for inlet Reynolds numbers of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for inlet turbulence intensities of 0.25% and 7.0%. Measurements were made in a linear cascade having a highly three-dimensional flow field resulting from thick inlet boundary layers. The purpose of the work is to provide benchmark quality data for three-dimensional CFD code and model verification. Data were obtained by a steady-state technique using a heated, isothermal blade. Heat fluxes were determined from a calibrated resistance layer in conjunction with a surface temperature measured by calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, shock impingement, and increased inlet turbulence on the surface heat transfer.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209296 , E-11775 , NAS 1.15:209296 , ARL-TR-2029 , Gas Turbine and Aeroengine Congress; Jun 07, 1999 - Jun 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Several tests were performed on a one-sixth scale Rocket Based Combined Cycle (RBCC) engine model at the University of Alabama in Huntsville. The UAH RBCC facility consists of a rectangular duct with a vertical strut mounted in the center. The scaled strut consists of two supersonic rocket nozzles with an embedded vertical turbine between the rocket nozzles. The tests included mass flow, flow visualization and horizontal pressure traverses. The mass flow test indicated a c:hoked condition when the rocket chamber pressure is between 200 psi and 300 psi. The flow visualization tests narrowed the rocket chamber pressure range from, 250 psi to 300 psi. Also, from this t.est, an assumption of a minimum 〈area choke was made. Horizontal pressure traverses were performed at locations both upstream and downstream of the nozzle exit plane. These traverses aided in examining the induced airflow due to the ejector effect and the growth of the: boundary layer in the strut sidewall gap.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Joint Propulsion; Jun 20, 1999 - Jun 23, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209165 , NAS 1.26:209165 , E-11756 , Air Breathing Engines; Sep 05, 1999 - Sep 10, 1999; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: This paper addresses the flowfield-dependent variation (FDV) methods in which complex physical phenomena are taken into account in the final form of partial differential equations to be solved so that finite difference methods (FDM) or finite element methods (FEM) themselves will not dictate the physics, but rather are no more than simply the options how to discretize between adjacent nodal points or within an element. The variation parameters introduced in the formulation are calculated from the current flowfield based on changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkohler numbers between adjacent nodal points, which play many significant roles such as adjusting the governing equations (hyperbolic, parabolic, and/or e!liptic), resolving various physical phenomena, and controlling the accuracy and stability of the numerical solution. The theory is verified by a number of example problems addressing the physical implications of the variation parameters which resemble the flowfield itself, shock capturing mechanism, transitions and interactions between inviscid/viscous, compressibility/incompressibility, and laminar/turbulent flows.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Fluid Dynamics; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TP-1999-209344 , NAS 1.60:209344 , L-17658
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: This paper describes the flight test results of the fifth generation cryogenic capillary pumped loop (CCPL-5) which flew on the Space Shuttle STS-95 in October of 1998 as part of the CRYOTSU Flight Experiment. This flight was the first in-space demonstration of the CCPL, a lightweight heat transport and thermal switching device for future integrated cryogenic bus systems. The CCPL-5 utilized nitrogen as the working fluid and operated between 80K and 110K. Flight results indicated excellent performance of the CCPL-5 under zero-G environment. The CCPL could start from a supercritical condition in all tests, and the loop operating temperature could be tightly controlled regardless of changes in the heat load and/or the sink temperature. In addition, the loop demonstrated successful operation with a heat load of 0.5 W as well as with parasitic heat loads alone.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: IECEC-99-042 , Intersociety Energy Conversion Engineering; Aug 01, 1999 - Aug 05, 1999; Vancouver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: AIAA Paper 99-3267 , CFD; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available un- der the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching an@ vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The two equation k-epsilon turbulence model of Chien has been implemented in the WIND Navier-Stokes flow solver. Details of the numerical solution algorithm, initialization procedure, and stability enhancements are described. Results obtained with this version of the model are compared with those from the Chien k-epsilon model in the NPARC Navier-Stokes code and from the WIND SST model for three validation cases: the incompressible flow over a smooth flat plate, the incompressible flow over a backward facing step, and the shock-induced flow separation inside a transonic diffuser. The k-epsilon model results indicate that the WIND model functions very similarly to that in NPARC, though the WIND code appears to he slightly more accurate in the treatment of the near-wall region. Comparisons of the k-epsilon model results with those from the SST model were less definitive, as each model exhibited strengths and weaknesses for each particular case.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209080 , NAS 1.15:209080 , E-11662 , AIAA Paper 99-0745 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Capillary Pumped Loops (CPL's) and Loop Heat Pipes (LHP's) are finding increased acceptance on upcoming NASA spacecraft missions, as well as military and commercial applications. The transition from a research and development tool to an "off the shelf' system is underway. The state of the art of Two Phase Systems (TPS) is reviewed and applications on various NASA missions are discussed, with particular emphasis on new technology developments.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Two Phase Technology 1999; May 17, 1999 - May 19, 1999; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Analysis of the unsteady aerodynamic environment in the Fastrac supersonic turbine is presented. Modal analysis of the turbine blades indicated possible resonance in crucial operating ranges of the turbopump. Unsteady computational fluid dynamics (CFD) analysis was conducted to support the aerodynamic and structural dynamic assessments of the turbine. Before beginning the analysis, two major problems with current unsteady analytical capabilities had to be addressed: modeling a straight centerline nozzle with the turbine blades and exit guide vanes (EGVs), and reducing run times significantly while maintaining physical accuracy. Modifications were made to the CFD code used in this study to allow the coupled nozzle/blade/EGV analysis and to incorporate Message Passing Interface (MPI) software. Because unsteadiness is a key issue for the Fastrac turbine [and future rocket engine turbines such as for the Reusable Launch Vehicle (RI.V)], calculations were performed for two nozzle-to-blade axial gaps. Calculations were also performed for the nozzle alone, and the results were imposed as an inlet boundary condition for a blade/EGV calculation for the large gap case. These results are compared to the nozzle/blade/EGV results.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: IGTI Turbo; Jun 01, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Environmental Systems; Jul 12, 1999 - Jul 15, 1999; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-10
    Description: For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209458 , NAS 1.15:209458 , E-11957
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-10
    Description: Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of a luminescent paints is described followed by applications in low speed, transonic, supersonic and cryogenic wind tunnels and in rotating machinery.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-10
    Description: The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TP-1999-209576 , M-938 , NAS 1.60:209576
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-10
    Description: Three problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. The first problem is the calculation of resonance within the continuous spectrum of the Blasius boundary layer. The second is calculation of the growth of Tollmien-Schlichting waves that are a direct result of disturbances that only lie outside of the boundary layer. And, the third problem is the calculation of non-parallel effects. Together, these problems represent a unified approach to the study of freestream disturbance effects that could lead to transition. Solutions to the temporal, initial-value problem with an inhomogeneous forcing term imposed upon the flow is sought. By solving a series of problems, it is shown that: A transient disturbance lying completely outside of the boundary layer can lead to the growth of an unstable Tollmien-Schlichting wave. A resonance with the continuous spectrum leads to strong amplification that may provide a mechanism for bypass transition once nonlinear effects are considered. A disturbance with a very weak unstable Tollmien-Schlichting wave can lead to a much stronger Tollmien-Schlichting wave downstream, if the original disturbance has a significant portion of its energy in the continuum modes.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209553 , NAS 1.26:209553 , ICASE-99-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-10
    Description: The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-10
    Description: This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209340 , NAS 1.26:209340 , ICASE-IR-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-10
    Description: Two new calibration algorithms were developed for the calibration of non-nulling multi-hole probes in compressible, subsonic flowfields. The reduction algorithms are robust and able to reduce data from any multi-hole probe inserted into any subsonic flowfield to generate very accurate predictions of the velocity vector, flow direction, total pressure and static pressure. One of the algorithms PROBENET is based on the theory of neural networks, while the other is of a more conventional nature (polynomial approximation technique) and introduces a novel idea of local least-squares fits. Both algorithms have been developed to complete, user-friendly software packages. New technology was developed for the fabrication of miniature multi-hole probes, with probe tip diameters all the way down to 0.035". Several miniature 5- and 7-hole probes, with different probe tip geometries (hemispherical, conical, faceted) and different overall shapes (straight, cobra, elbow probes) were fabricated, calibrated and tested. Emphasis was placed on the development of four stainless-steel conical 7-hole probes, 1/16" in diameter calibrated at NASA Langley for the entire subsonic regime. The developed calibration algorithms were extensively tested with these probes demonstrating excellent prediction capabilities. The probes were used in the "trap wing" wind tunnel tests in the 14'x22' wind tunnel at NASA Langley, providing valuable information on the flowfield over the wing. This report is organized in the following fashion. It consists of a "Technical Achievements" section that summarizes the major achievements, followed by an assembly of journal articles that were produced from this project and ends with two manuals for the two probe calibration algorithms developed.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-10
    Description: An unsteady, multiblock, Reynolds Averaged Navier Stokes solver based on Runge-Kutta scheme and Pseudo-time step for turbo-machinery applications was developed. The code was validated and assessed against analytical and experimental data. It was used to study a variety of physical mechanisms of unsteady, three-dimensional, turbulent, transitional, and cooling flows in compressors and turbines. Flow over a cylinder has been used to study effects of numerical aspects on accuracy of prediction of wake decay and transition, and to modify K-epsilon models. The following simulations have been performed: (a) Unsteady flow in a compressor cascade: Three low Reynolds number turbulence models have been assessed and data compared with Euler/boundary layer predictions. Major flow features associated with wake induced transition were predicted and studied; (b) Nozzle wake-rotor interaction in a turbine: Results compared to LDV data in design and off-design conditions, and cause and effect of unsteady flow in turbine rotors were analyzed; (c) Flow in the low-pressure turbine: Assessed capability of the code to predict transitional, attached and separated flows at a wide range of low Reynolds numbers and inlet freestream turbulence intensity. Several turbulence and transition models have been employed and comparisons made to experiments; (d) leading edge film cooling at compound angle: Comparisons were made with experiments, and the flow physics of the associated vortical structures were studied; and (e) Tip leakage flow in a turbine. The physics of the secondary flow in a rotor was studied and sources of loss identified.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209303 , E-11805 , PSU-CGTP-9901 , NAS 1.26:209303
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-10
    Description: Experimental and theoretical studies of low speed leading edge boundary layer receptivity to free-stream vorticity produced by upstream wires normal to the leading edge are discussed. Data include parametric variations in leading edge configuration and details of the incident disturbance field including single and multiple wakes. The induced disturbance amplitude increases with increases in the leading edge diameter and wake interactions. Measurements agree with the theory of M. E. Goldstein.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209334 , NAS 1.26:209334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208767 , Rept-A-99V0007 , NAS 1.15:208767
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-10
    Description: The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA Microgravity Materials Science Conference; 399-405; NASA/CP-1999-209092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-10
    Description: This paper presents a rational approach to modelling the triple velocity correlations that appear in the transport equations for the Reynolds stresses. All existing models of these correlations have largely been formulated on phenomenological grounds and are defective in one important aspect: they all neglect to allow for the dependence of these correlations on the local gradients of mean velocity. The mathematical necessity for this dependence will be demonstrated in the paper. The present contribution lies in the novel use of Group Representation Theory to determine the most general tensorial form of these correlations in terms of all the second- and third-order tensor quantities that appear in the exact equations that govern their evolution. The requisite representation did not exist in the literature and therefore had to be developed specifically for this purpose by Professor G. F. Smith. The outcome of this work is a mathematical framework for the construction of algebraic, explicit, and rational models for the triple velocity correlations that are theoretically consistent and include all the correct dependencies. Previous models are reviewed, and all are shown to be an incomplete subset of this new representation, even to lowest order.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209134 , L-17847 , NAS 1.15:209134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-10
    Description: Aeroheating characteristics of the X-33 Rev-F configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel (Test 6770). Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on a 0.013-scale model at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 4.9 million; and body-flap deflections of 10-deg and 20-deg. The effects of discrete roughness elements on boundary layer transition, which included trip height, size, and location, both on and off the windward centerline, were investigated. This document is intended to serve as a quick release of preliminary data to the X-33 program; analysis is limited to observations of the experimental trends in order to expedite dissemination.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209122 , L-17824 , NAS 1.15:209122
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-10
    Description: In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-208996 , NAS 1.26:208996 , ICASE-99-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-10
    Description: The feasibility of using the Rayleigh scattering technique for molecular density imaging of the free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel has been experimentally demonstrated. The Rayleigh scattering was viewed with a near-backward geometry with a frequency-doubled output from a diode-pumped CW Nd:YAG laser and an intensified charge-coupled device camera. Measurements performed in the range of free-stream densities from 3 x 10(exp 25) to 24 x 10(exp 25) molecules/cu m indicate that the observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute signal levels agree (within approx. 30 percent) with the expected signal levels computed based on the well-known quantities of flow field density, Rayleigh scattering cross section for N2, solid angle of collection, transmission of the optics, and the independently calibrated camera sensitivity. These results show that the flow field in this facility is primarily molecular (i.e., not contaminated by clusters) and that Rayleigh scattering is a viable technique for quantitative nonintrusive diagnostics in this facility.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208970 , NAS 1.15:208970 , L-17801
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-10
    Description: A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: HPCCP/CAS Workshop Proceedings 1998; 125-132; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: A new transport equation for intermittency factor is proposed to model transitional flows. The intermittent behavior of the transitional flows is incorporated into the computations by modifying the eddy viscosity, mu(sub t), obtainable from a turbulence model, with the intermittency factor, gamma: mu(sub t, sup *) = gamma.mu(sub t). In this paper, Menter's SST model (Menter, 1994) is employed to compute mu(sub t) and other turbulent quantities. The proposed intermittency transport equation can be considered as a blending of two models - Steelant and Dick (1996) and Cho and Chung (1992). The former was proposed for near-wall flows and was designed to reproduce the streamwise variation of the intermittency factor in the transition zone following Dhawan and Narasimha correlation (Dhawan and Narasimha, 1958) and the latter was proposed for free shear flows and was used to provide a realistic cross-stream variation of the intermittency profile. The new model was used to predict the T3 series experiments assembled by Savill (1993a, 1993b) including flows with different freestream turbulence intensities and two pressure-gradient cases. For all test cases good agreements between the computed results and the experimental data are observed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209313 , E-11902 , NAS 1.26:209313
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: High performance piezoelectric polymers are of interest to NASA as they may be useful for a variety of sensor applications. Over the past few years research on piezoelectric polymers has led to the development of promising high temperature piezoelectric responses in some novel polyimides. In this study, a series of polyimides have been studied with systematic variations in the diamine monomers that comprise the polyimide while holding the dianhydride constant. The effect of structural changes, including variations in the nature and concentration of dipolar groups, on the remanent polarization and piezoelectric coefficient is examined. Fundamental structure-piezoelectric property insight will enable the molecular design of polymers possessing distinct improvements over state-of-the-art piezoelectric polymers including enhanced polarization, polarization stability at elevated temperatures, and improved processability.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209516 , NAS 1.26:209516 , ICASE-99-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-10
    Description: The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209398 , NAS 1.15:209398 , E-11834 , ICOMP-99-08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-10
    Description: Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209517 , NAS 1.26:209517 , ICASE-99-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-10
    Description: The secondary instability of three-dimensional incompressible boundary layers is studied using Floquet theory. Starting from the equilibrium solutions that we obtained from the PSE computations documented in Part 1, we investigate the region where a purely stationary crossflow disturbance saturates for its secondary instability characteristics utilizing developed global and local eigenvalue solvers that are based on the Implicitly Restarted Arnoldi Method, and a Newton-Raphson technique, respectively. The main focuses of this study are on the existence of multiple roots in the eigenvalue spectrum that could explain experimental observations of time-dependent occurrences of an explosive growth of traveling disturbances, on the routes by which high-frequency disturbances enter the boundary layer, as well as on gaining more information about threshold amplitudes for the growth of secondary disturbances.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209341/PT2 , NAS 1.26:209341/PT2 , ICASE-99-19-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-10
    Description: An experimental study to investigate the effect of steady and oscillatory (with zero net mass flux) blowing on cavity resonance is undertaken. The objective is to study the basic mechanisms of the control of cavity resonance. An actuator is designed and calibrated to generate either steady blowing or oscillatory blowing with A zero net mass flux. The results of the experiment show that both steady and oscillatory blowing are effective, and reduce the amplitude of the dominant resonant mode by 1OdB. The oscillatory blowing is however found to be more superior in that the same effectiveness could be accomplished with a momentum coefficient an order of magnitude smaller than for steady blowing. The experiment also confirms the results of previous computations that suggest the forcing frequency for oscillatory blowing must not be at harmonic frequencies of the cavity resonant modes.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-10
    Description: The primary stability of incompressible three-dimensional boundary layers is investigated using the Parabolized Stability Equations (PSE). We compute the evolution of stationary and traveling disturbances in the linear and nonlinear region prior to transition. As model problems, we choose Swept Hiemenz Flow and the DLR Transition Experiment. The primary stability results for Swept Hiemenz Flow agree very well with computations by Malik et al. For the DLR Experiment, the mean flow profiles are obtained by solving the boundary layer equations for the measured pressure distribution. Both linear and nonlinear results show very good agreement with the experiment.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209330 , NAS 1.26:209330 , ICASE-99-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-10
    Description: The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available under the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-10
    Description: Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though unambiguous conclusions are still missing. Addressing these issues is the major goal of the present project. The theory addressing the above problem, experimental methods, several figures which include: (1) the spatial wave numbers at which the system is neutrally stable as a function of growth velocity for linear kinetics and supersaturation for nonlinear kinetics; (2) a schematic of the experiment of lysozyme crystal growing under conditions of natural convection; (3) fluctuations in time, t, of the normal growth rate, R(t), vicinal slope, p(t) and Fourier Spectra of R(t), discussions and conclusions are presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA Microgravity Materials Science Conference; 115-123; NASA/CP-1999-209092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-10
    Description: The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209105 , NAS 1.26:209105 , ICASE -99-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-10
    Description: In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209113 , NAS 1.15:209113 , L-17846
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-10
    Description: In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-10
    Description: An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle re-entry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800 degrees Fahrenheit. The environmental pressure was varied from 0.0001 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of Saffil, Q-Fiber felt, Cerachrome, and three multi-layer insulation configurations were measured.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208972 , NAS 1.15:208972 , L-17808
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-10
    Description: A two component Point Doppler Velocimetry (PDV) system has been developed and tested. Improvements were made to an earlier PDV system, in terms of experimental techniques, as well as the data acquisition and reduction software. Measurements of the streamwise and spanwise mean and fluctuating velocities for flows from a rectangular channel and over an NACA 0012 airfoil were made, and the data were compared against hot wire data. The closest to the airfoil surface that PDV measurements could be made was on the order of 0.005 m(0.2", z/c = 0.0169). When the PDV and hot wire data were compared, the time traces for each appeared similar. The mean velocities agreed to within plus or minus 2 m/sec, while the RMS velocities agreed to plus or minus 0.4 m/sec. While the PDV time autocorrelations agreed with those of the hot wire data, the PDV power spectral densities were noisier above 750 Hz. A major source of error in these experiments was determined to be the drifting of the iodine cell stem temperatures. While the stem temperatures were controlled to within plus or minus 0.1 C, this could lead to a frequency shift of as much as 6 MHz, which translates into an error of 1.6 m/sec for the back scatter channel, and up to 6.9 m/sec for the forward scatter channel. These error estimates are consistent with the observed error magnitudes.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-10
    Description: This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-10
    Description: The interaction of shock waves with vortices has received much attention in the past, mainly because shock-vortex interaction closely models the interaction of a shock wave with the coherent structures of a turbulent flow-field, and is a key feature in the broad-band shock noise for supersonic jets in off-project conditions. Chu and Kovasznay have shown that a weak disturbance in a viscous heat conducting fluid can be decomposed as the sum of three basic modes, namely acoustic, vortical and entropy mode; the interaction of any of these modes with a shock wave gives rise to all three disturbance modes downstream of the shock. The vortical mode is important since it constitutes the basis of the coherent structures that have been observed to dominate turbulence for low- to moderate-flow speed. Hollingsworth et al. have experimentally investigated the interaction of a cylindrical shock-induced starting vortex with a plane normal shock, and have shown that the interaction generates a cylindrical acoustic pulse that exhibits a quadrupolar structure consisting of four alternate compression and expansion regions centered around the transmitted vortex. The investigations of Hollingsworth and Richards have been extended by Dosanjh and Weeks that have analyzed the interaction of a columnar spiral vortex with a normal shock wave, thus obtaining quantitative measurements and confirming the generation of a progressive cylindrical wavefront of alternate compression-expansion nature. Naumann and Hermanns' have experimentally addressed the non-linear aspects of shock-vortex interaction, and have shown that the interaction causes both a diffraction and a reflection of the shock with a pattern consisting of either a regular-or a Mach-reflection depending on the shock and the vortex strengths. An attempt to theoretically explain the production of sound from the shock-vortex interaction was carried out by Ribner. Pao and Salas have numerically studied two-dimensional shock-vortex interactions.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-10
    Description: The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209170 , NAS 1.26:209170 , E-11771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-10
    Description: Computational Fluid Dynamics (CFD) numerical simulations of low-density shock-wave interactions for an incident shock impinging on a cylinder have been performed. Flow-field density gradient and surface pressure and heating define the type of interference pattern and corresponding perturbations. The maximum pressure and heat transfer level and location for various interaction types (i.e., shock-wave incidence with respect to the cylinder) are presented. A time-accurate solution of the Type IV interference is employed to demonstrate the establishment and the steadiness of the low-density flow interaction.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-209358 , NAS 1.15:209358 , L-17878
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-10
    Description: Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209121 , NAS 1.26:209121 , ICASE-99-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-10
    Description: The dissipation range energy balance of the direct interaction approximation is applied to rotating turbulence when rotation effects persist well into the dissipation range. Assuming that RoRe (exp 1/2) is much less than 1 and that three-wave interactions are dominant, the dissipation range is found to be concentrated in the wavevector plane perpendicular to the rotation axis. This conclusion is consistent with previous analyses of inertial range energy transfer in rotating turbulence, which predict the accumulation of energy in those scales.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-208997 , NAS 1.26:208997 , ICASE-99-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-10
    Description: In this paper we analyze and compare the lattice Boltzmann equation with the beam scheme in details. We notice the similarity and differences between the lattice Boltzmann equation and the beam scheme. We show that the accuracy of the lattice Boltzmann equation is indeed second order in space. We discuss the advantages and limitations of lattice Boltzmann equation and the beam scheme. Based on our analysis, we propose an improved multi-dimensional beam scheme.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209001 , NAS 1.26:209001 , ICASE-99-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-10
    Description: A capacitance technique was used to monitor the film thickness separating two steel balls of a unique tribometer while subjecting the ball-ball contact to highly stressed, zero entrainment velocity (ZEV) conditions. All tests were performed under a N2 purge (R.H. 〈 1.0%) and utilized 52100 steel balls (R(sub a) = 0.02 mm). Tribometer operations and capacitance-to-film-thickness accuracy were verified by comparing the film thickness approximations to established theoretical predictions for test conditions involving pure rolling. Pure rolling experiments were performed under maximum contact stresses and entrainment velocities of 1.0 GPa and 1.0 m/s to 3.0 m/s, respectively. All data from these baseline tests conformed to theory. ZEV tests were initiated after calibration of the tribometer and verification of film thickness approximation accuracy. Maximum contact stresses up to 0.57 GPa were supported at zero entrainment velocity with sliding speeds from 6.0 to 10.0 m/s for sustained amounts of time up to 28.8 minutes. The protective lubricating film separating the specimens at ZEV had a thickness between 0.10 and 0.14 mm (4 to 6 min), which corresponds to an approximate L-value of 4. The film thickness did not have a strong dependence upon variations of load or speed. Decreasing the sliding speed from 10.0 m/s to 1 m/s revealed a rapid loss in load support between 3.0 and 1.0 m/s. The formation of an immobile film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at these zero entrainment velocity conditions, relevant to the ball-ball contact application in retainerless ball bearings.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1999-208848 , E- 11469 , NAS 1.15:208848
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The Capillary Pumped Loop 3 (CAPL 3) Experiment is a follow on to the CAPL 1 and CAPL 2 experiments which flew on STS-60 (2/94) and STS-69 (9/95), respectively. CAPL 3 is tentatively scheduled to fly on the Space Shuttle in late 2000 as part of the Hitchhiker Experiments Advancing Technology (HEAT) payload. The experiment is a joint Naval Research Laboratory (NRL)/Goddard Space Flight Center (GSFC) payload which will meet technology objectives for both the Department of Defense and NASA. The primary objective of CAPL 3 is to demonstrate in space a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and at least 50% heat load sharing with hardware for a deployable radiator. CAPL 3 is a full scale CPL system with four parallel capillary evaporators. The loop also contains a capillary starter pump, 8 parallel direct condensation condensers with associated flow regulators, a back pressure regulator, a two-phase reservoir, and various headers and transport tubing. A variable conductance heat pipe is located between one of the evaporators and the experiment radiator to provide a cooling source for the demonstration of heat load sharing. The experiment has an operating power range of 100 W to approximately 1400 W. The experiment ammonia charge will cause it to transition to a fixed conductance mode of operation if the radiator usage reaches 85%. Ambient functional tests have been performed on the experiment. Tests performed included start-up, low power, power cycles, high power, heat load sharing, variable/fixed conductance transition, saturation temperature changes, and pressure primes while the system was operating. The majority of the testing was performed at an ammonia saturation temperature of 30C, but a few tests were done at temperatures above and below this. The testing was highly successful. Details of the tests performed and a discussion of the results will be given in the presentation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Two-Phase Technology; May 17, 1999 - May 19, 1999; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and CPL's will be addressed throughout the paper whenever appropriate.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Two-Phase Technology; May 17, 1999 - May 19, 1999; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...