ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Nitrification  (6)
  • Springer  (6)
  • 1990-1994  (6)
  • 1985-1989
  • 1950-1954
  • 1994  (6)
  • Geosciences  (6)
Collection
  • Articles  (6)
Publisher
  • Springer  (6)
Years
  • 1990-1994  (6)
  • 1985-1989
  • 1950-1954
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 137-142 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Bamboo savanna ; N mineralization ; Nutrient pools ; Temporal variations ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of harvesting bamboo savanna on the dynamics of soil nutrient pools, N mineralization, and microbial biomass was examined. In the unharvested bamboo site NO inf3 sup- -N in soil ranged from 0.37 to 3.11 mg kg-1 soil and in the harvested site from 0.43 to 3.67 mg kg-1. NaHCO3-extractable inorganic P ranged from 0.55 to 3.58 mg kg-1 in the unharvested site and from 1.01 to 4.22 mg kg-1 in the harvested site. Over two annual cycles, the N mineralization range in the unharvested and harvested sites was 0–19.28 and 0–24.0 mg kg-1 soil month-1, respectively. The microbial C, N, and P ranges were 278–587, 28–64, and 12–26 mg kg-1 soil, respectively, with the harvested site exhibiting higher values. Bamboo harvesting depleted soil organic C by 13% and total N by 20%. Harvesting increased N mineralization, resulting in 10 kg ha-1 additional mineral N in the first 1st year and 5 kg ha-1 in the 2nd year following the harvest. Microbial biomass C, N and P increased respectively by 10, 18, and 5% as a result of bamboo harvesting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 173-176 
    ISSN: 1432-0789
    Keywords: Ammonification ; Cyfluthrin ; Nitrification ; Nitrogen ; N mineralization ; N transformations ; Pesticides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory incubation experiments were conducted in soil to study the influence of the insecticide Baythroid on immobilization-remineralization of added inorganic N, mineralization of organic N, and nitrification of added NH inf4 su+ -N. Baythroid was applied at 0, 0.4, 0.8, 1.6, 3.2, and 6.4 μg g-1 soil (active ingredient basis). The treated soils were incubated at 30°C for different time intervals depending upon the experiment. The immobilization and mineralization of N were significantly increased in the presence of Baythroid, the effect being greater with higher doses of the insecticide. Conversely, nitrification was retarded at lower doses of Baythroid and significantly inhibited at higher doses. The results of these studies suggest that excessive amonts of insecticide residues affect different microbial populations differently, leading to changes in nutrient cycling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 309-313 
    ISSN: 1432-0789
    Keywords: Herbicides ; Urea hydrolysis ; Nitrification ; Ammonia toxicity ; Nitrification inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of 5 and 50 mg active ingredient kg-1 soil of nine preemergence and nine postemergence herbicides on transformations of urea N in soil was studied in samples of two coarse-textured and two fine-textured soils incubated aerobically at 20°C. The effects of each herbicide on soil urea transformations was measured by determining the amounts of urea hydrolyzed and the amounts of NO inf3 sup- and NO inf2 sup- produced at various times after treatment with urea. Applied at the rate of 5 mg active ingredient kg-1 soil, none of the herbicides retarded urea hydrolysis in the four soils used, but four of the postemergence herbicides (acifluorfen, diclofop methyl, fenoxaprop ethyl) retarded urea hydrolysis in the two coarse-textured soils. All the herbicides tested except siduron retarded nitrification in the two coarse-textured soils when applied at 50 mg of urea N active ingredient kg-1 soil, and fenoxaprop ethyl and tridiphane markedly retarded nitrification of urea N in all four of the soils when applied at this rate. One-way analysis of variance and correlation analyses indicated that the inhibitory effects of the 18 herbicides tested on nitrification of urea N in soil increased with a decrease in the organic-matter content and an increase in the sand content of the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 1-6 
    ISSN: 1432-0789
    Keywords: Ammonium ; Denitrification ; Nitrification ; Nitrous oxide ; Organic carbon ; Acetylene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We observed that soil cores collected in the field containing relatively high NH inf4 sup+ and C substrate levels produced relatively large quantities of N2O. A series of laboratory experiments confirmed that the addition of NH inf4 sup+ and glucose to soil increase N2O production under aerobic conditions. Denitrifying enzyme activity was also increased by the addition of NH inf4 sup+ and glucose. Furthermore, NH inf4 sup+ and glocose additions increased the production of N2O in the presence of C2H2. Therefore, we concluded that denitrification was the most likely source of N2O production. Denitrification was not, however, directly affected by NH inf4 sup+ in anaerobic soil slurries, although the use of C substrate increased. In the presence of a high substrate C concentration, N2O production by denitrifiers may be affected by NO inf3 sup- supplied from NH inf4 sup+ through nitrification. Alternatively, N2O may be produced during mixotrophic and heterotrophic growth of nitrifiers. The results indicated that the NH inf4 sup+ concentration, in addition to NO inf3 sup- , C substrate, and O2 concentrations, is important for predicting N2O production and denitrification under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Coniferous humus ; Ergosterol ; Soil respiration ; Substrate induced respiration ; Metabolic quotient ; Nitrification ; Pinus sylvestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied the reactions of humus layer (F/H) microbial respiratory activity, microbial biomass C, and the fungal biomass, measured as the soil ergosterol content, to the application of three levels of wood ash (1000, 2500, and 5000 kg ha-1) and to fire treatment in a Scots pine (Pinus sylvestris L.) stand. Physicochemical measurements (pH, organic matter content, extractable and total C content, NH 4 + and total N content, cation-exchange capacity, base saturation) showed similarity between the fire-treated plots and those treated with the lowest dose of wood ash (1000 kg ha-1). The ash application did not change the level of microbial biomass C or fungal ergosterol when compared to the control, being around 7500 and 350 μg g-1 organic matter for the biomass C and ergosterol, respectively. The fire treatment lowered the values of both biomass measurements to about half that of the control values. The fire treatment caused a sevenfold fall in the respiration rate of fieldmoist soil to 1.8 μl h-1 g-1 organic matter compared to the values of the control or ash treatments. However, in the same soils adjusted to a water-holding capacity of 60%, the differences between the fire treatment and the control were diminished, and the ash-fertilized plots were characterized by a higher respiration rate compared to the control plots. The glucose-induced respiration reacted in the same way as the water-adjusted soil respiration. The metabolic quotient, qCO2, gradually increased from the control level with increasing applications of ash, reaching a maximum in the fire treatment. Nitrification was not observed in the treatment plots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 42-48 
    ISSN: 1432-0789
    Keywords: N2O ; Coated Calcium Carbide ; Acetylene ; Nitrification ; Denitrification ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...