ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (127)
  • Saccharomyces cerevisiae  (127)
  • 2020-2023
  • 1990-1994  (127)
  • 1993  (127)
  • Biology  (127)
  • Mathematics
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (127)
Publisher
Years
  • 2020-2023
  • 1990-1994  (127)
Year
Topic
  • 1
    ISSN: 1432-0983
    Keywords: Glucoamylase ; Gene cloning ; Hormoconis resinae ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA coding for glucoamylase P of Hormoconis resinae was cloned using a synthetic oligonucleotide probe coding for a peptide fragment of the purified enzyme and polyclonal anti-glucoamylase antibodies. Nucleotide-sequence analysis revealed an open reading frame of 1848 base pairs coding for a protein of 616 amino-acid residues. Comparison with other fungal glucoamylase amino-acid sequences showed homologies of 37–48%. The glucoamylase cDNA, when introduced into Saccharomyces cerevisiae under the control of the yeast ADC1 promoter, directed the secretion of active glucoamylase P into the growth medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Dynamin ; Mitochondria ; GTP binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Growth control ; Genetic mapping ; Molecular cloning ; Nucleo-mitochondrial interaction ; Saccharomyces cerevisiae ; Viability of petites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The PEL1 gene of Saccharomyces cerevisiae is essential for the cell viability of mitochondrial petite mutants, for the ability to utilize glycerol and ethanol on synthetic medium, and for cell growth at higher temperatures. By tetrad analysis the gene was assigned to chromosome III, centromere proximal of LEU2. The PEL1 gene has been isolated and cloned by the complementation of a pel1 mutation. The molecular analysis of the chromosomal insert carrying PEL1 revealed that this gene corresponds to the YCL4W open reading frame on the complete DNA sequence of chromosome III. The putative Pel1 protein is characterized by a low molecular weight of approximately 17 kDa, a low codon adaptation index, and a high leucine content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Papaver somniferum L. ; ARS ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The minimal fragment of mitochondrial DNA from Papaver somniferum L. (poppy) able to promote autonomous plasmid replication in the yeast Saccharomyces cerevisiae was sequenced. Sequence analysis of the 917-bp MK4/8 DNA fragment revealed a high AT content, and the presence of two 12-bp sequences differing from the ARS core consensus of S. cerevisiae only by a T and C insertion, respectively. The mitochondrial insert contains a further six 11-bp sequences with one mismatch to the S. cerevisiae core consensus, more then 20 related sequences with two base pair exchanges, numerous direct and inverted repeats, and many copies of a sequence motif called the ARS box. The original 4.2-kb mitochondrial DNA fragment, as well as the minimal 917-bp subfragment in vector pFL1-E (a variant of YIP5, lacking an origin of replication in yeast), were then tested for their ability to replicate autonomously in another fungus, Kluyveromyces lactis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0983
    Keywords: 2-Oxoglutarate dehydrogenase ; Molecular cloning ; Saccharomyces cerevisiae ; Sequencing ; Suppressor ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of mitochondrial 2-oxoglutarate dehydrogenase in S. cerevisiae can be impaired either by the ogd1 or the kgd1 mutation. The OGD1 gene and two suppressor genes were isolated by complementation of the ogd1 mutant. The complementation of the kdg1 mutant by the OGD1 gene, an allelism test, and meiotic mapping, revealed that the ogd1 and kgd1 mutations are allelic. The two mutations were differentiated by the cloned suppressor gene which was able to partially complement ogd1, but not kgd1. The molecular analysis of the suppressor gene revealed its identity with the natural tRNA CAG Gln gene found in the upstream region of URA10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Sporulation mutants ; Reporter genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Reporter genes consisting of sporulation-specific promoters fused to lacZ were used as markers to monitor the sporulation pathway of the yeast Saccharomyces cerevisiae. Strains transformed with these lacZ gene fusions expressed β-galactosidase (assayable on plates using the substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, X-gal) in a sporulation-dependent manner. Mutagenesis experiments performed on transformed strains resulted in the recovery of a number of novel sporulation mutants. Three classes of mutants were obtained: those which overexpressed the reporter gene under sporulation conditions, those which did not express the gene under any conditions, and those which expressed the gene in vegetative cells not undergoing sporulation. On the basis of the blue colony-colour produced in the presence of X-gal these have been described as superblue, white, and blue vegetative mutants, respectively. These were further characterised using earlier reporter genes and other marker systems. This study established that the multicopy reporter plasmids chosen do not interfere with sporulation; they are valid tools for monitoring the pathway and they provide a way to isolate mutations not readily selected by other markers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 461-464 
    ISSN: 1432-0983
    Keywords: Chromosome fragmentation ; MEL gene family ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nine members, MEL2–MEL10, of the MEL gene family coding for α-galactosidase were physically mapped to the ends of the chromosomes by chromosome fragmentation. Genetic mapping of the genes supported the location of all the MEL genes in the left arm of their resident chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Transformation ; Plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have compared a number of procedures for the transformation of whole cells of the yeast Saccharomyces cerevisiae and assessed the effects of dimethylsulphoxide (DMSO) or ethanol, both of which have been reported to enhance transformation efficiency. We find that simplified methods benefit from the addition of one of these compounds, and although differences are observed between strains as to the more beneficial reagent, peak transformation efficiency is, in general obtained with 10% DMSO or 10% EtOH. Increases of between six- and 50-fold are observed, despite a reduction in cell viability, and at this concentration the two compounds are not additive in their effects. The optimum level appears to depend on a balance between improved DNA uptake and reduced cell viability. As a result of this work we present a straightforward and rapid transformation procedure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: Glycosylphosphatidylinositol anchored-protein ; Southern analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The GGP1 gene encodes the only GPI-anchored glycoprotein (gp115) that has been purified todate in the budding yeast Saccharomyces cerevisiae. It is a single-copy gene whose deduced amino-acid sequence shares no significant homology to any other known protein. In this paper we report a Southern hybridization analysis of genomic DNA from different eukaryotic organisms to identify homologues of the GGP1 gene. We have analyzed DNA prepared from a unicellular green alga (Chlamydomonas eugametos), from two distantly related yeast species (Candida cylindracea and Schizosaccharomyces pombe), and from the common bean Phasoleus vulgaris. The moderate stringency of the experimental conditions and the high specificity of the probes used indicate that a single-copy of GGP1-related sequences exists in all these eukaryotic organisms. The chromosomal localization of the GGP1 gene in S. cerevisiae has also been determined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 92-94 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene mapping ; Idiomorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Phospholipid synthesis ; Phospholipid-N-methyltransferase ; Mutant ; Over-expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of the auxotrophic requirements for choline of a cdg1, cho2 double-mutant, by transformation with a genomic DNA library in a high copy number plasmid, two different types of complementing DNA inserts were identified. One type of insert was earlier shown to represent the CHO2 structural gene. In this report we describe the molecular and biochemical characterization of the second type of complementing activity. The transcript encoded by the cloned gene was about 1000-nt in length and was regulated in response to the soluble phospholipid precursors, inositol and choline. A gene disruption resulted in no obvious growth phenotype at 23°C or 30°C, but in a lack of growth at 37°C in the presence of monomethylethanolamine. Null-mutants exhibited an inositol-secretion phenotype, indicative of mutations in the lipid biosynthetic pathway. Complementation analysis, biochemical analysis of the phospholipid methylation pathway in vivo, and comparison of the restriction pattern of the cloned gene to published sequences, unequivocally identified the cloned gene as the OPI3 gene, encoding phospholipid-N-methyltransferase in yeast. When present in multiple copies the OPI3 gene efficiently suppresses the phospholipid methylation defect of a cho2 mutation. As a result of impaired synthesis of phosphatidylcholine, the INO1-deregulation phenotype is abolished in cho2 mutants transformed with the OPI3 gene on a high copy number plasmid. Taken together, these data demonstrate a significantly overlapping specificity of the OPI3 gene product for three sequential phospholipid methylation reactions in the de novo Ptd-Cho biosynthetic pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 181-183 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; c-myc epitope ; Fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to facilitate the process of epitope-tagging of yeast proteins, we have constructed two Saccharomyces cerevisiae-Escherichia coli shuttle vectors that allow fusion of a sequence encoding an epitope of the human c-myc protein at the 3′ end of any gene. An example of the use of this technique is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 295-304 
    ISSN: 1432-0983
    Keywords: Meiosis ; Meiotic recombination ; Saccharomyces cerevisiae ; REC114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four new meiotic recombination genes were previously isolated by selecting for mutations that rescue the meiotic lethality of rad52 spo13 strains. One of these genes, REC114, is described here, and the data confirm that REC114 is a meiosis-specific recombination gene with no detectable function in mitosis. REC114 is located on chromosome XIII approximately 4,9 cM from CIN4. The nucleotide sequence reveals an open reading frame of 1262 bp, consensus intron splice sites close to the 3′ end, and indicates that the second exon codes for only seven amino acids. In the promoter region, a URS1 consensus sequence (TGGGCGGCTA), identical to the URS1 found in the promoter of SPO16, is present 93 bp upstream of the translation start site. Northern-blot hybridization demonstrates that REC114 is transcribed only during meiosis and that it is not expressed in the absence of the IME1 gene product, even when IME2 is constitutively expressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0983
    Keywords: Trehalase ; Trehalose-6-P synthase ; cAMP mutants ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rise in cAMP level that follows the addition of glucose or 2,4-dinitrophenol (DNP) to stationaryphase cells of Saccharomyces cerevisiae was accompanied by a marked activation of trehalase (3-fold increase) and a concomitant deactivation of trehalose-6 phosphate synthase (50% of the basal levels). In glucose-grown exponential cells, which are deficient in glucose-induced cAMP signalling, the addition of glucose also prompted a decrease in trehalose-6 phosphate synthase, but had no effect on trehalase activity. Mutants defective in the RAS-adenylate cyclase pathway (ras1 ras2 bcy1 strain), as well as mutants containing greatly reduced protein kinase activity either cAMP-dependent (tpk w1 BCY1 strains) or cAMP-independent (tpk1 w1 bcy1 strains), were unable to show glucose- or DNP-induced trehalase activation but still displayed a clear decrease in trehalose-6 phosphate synthase activity upon addition of these compounds. These data suggest that the activity of trehalose-6 phosphate synthase, as opposed to that of trehalase, is not controlled by the cAMP signalling pathway “in vivo”. Trehalose-6 phosphate synthase was competitively inhibited by glucose (Ki=15 mM) and resulted unaffected by ATP in assays performed “in vitro”.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 375-381 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Isocitrate lyase ; Gene regulation ; Ethanol induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ICL1 gene encoding the isocitrate lyase from Saccharomyces cerevisiae was cloned and sequenced. A reading frame of 557 amino acids showing significant similarity to isocitrate lyases from seven other species could be identified. Construction of icl1 null mutants led to growth defects on C2 carbon sources while utilization of sugars or C3 substrates remained unaffected. Using an ICL1-lacZ fusion integrated at the ICL1 locus, a more than 200-fold induction of β-galactosidase activity was observed after growth on ethanol when compared with glucose-repressed conditions. A preliminary analysis of the ICL1 upstream region identified a 364-bp fragment necessary and sufficient for this regulatory phenotype. Sequence motifs also present in the upstream regions of co-regulated genes were found within this region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene amplification ; ADH4 ; CUP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Primary gene amplification, i.e., mutation from one gene copy to multiple gene copies per genome, is important in genomic evolution, as a means of producing anti-cancer drug resistance, and is associated with the progression of tumor malignancy. Primary amplification has not been studied in normal eukaryotic cells because amplifications are extremely rare in these cells. A system has been developed to phenotypically identify co-amplifications of the ADH4 and CUP1 genes of Saccharomyces cerevisiae and 21 independent spontaneous amplifications have been isolated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 414-422 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Donation ; Gene conversion ; Double-strand break repair ; Heteroduplex DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used transformation of yeast with lincarized plasmids to study the transfer of information to the unbroken chromosome during double-strand break repair. Using a strain which carried the wild-type HIS3 allele, and a linearized plasmid which carried a mutant his3 allele, we have obtained His- transformants. In these, double-strand break repair has resulted in precise transfer of genetic information from the plasmid to the chromosome. Such repair events, we suggest, are gene conversions which entail the formation of heteroduplex DNA on the (unbroken) chromosome. If this suggestion is correct, our results reflect the spatial distribution of such heteroduplex DNA. Transfer of information from the plasmid to the chromosome was obtained at a maximal frequency of 1.5% of the repair events, and showed a dependence with distance. Transformation to His- was also obtained with a 2-kbp insertion and with a deletion of 200 bp. The latter results suggest that gene conversion of large heterologies can occur via repair of a heteroduplex DNA intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 185-192 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Transcription ; DNA replication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In eukaryotic organisms, genes involved in DNA replication are often subject to some form of cell cycle control. In the yeast Saccharomyces cerevisiae, most of the DNA replication genes that have been characterized to date are regulated at the transcriptional level during G1 to S phase transition. A cis-acting element termed the MluI cell cycle box (or MCB) conveys this pattern of regulation and is common among more than 20 genes involved in DNA synthesis and repair. Recent findings indicate that the MCB element is well conserved among fungi and may play a role in controlling entry into the cell division cycle. It is evident from studies in higher systems, however, that transcriptional regulation is not the only form of control that governs the cell-cycle-dependent expression of DNA replication genes. Moreover, it is unclear why this general pattern of regulation exists for so many of these genes in various eukaryotic systems. This review summarizes recent studies of the MCB element in yeast and briefly discusses the purpose of regulating DNA replication genes in the eukaryotic cell cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Pentose-phosphate pathway ; Transketolase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Deletion mutants for the yeast transketolase gene TKL1 were constructed by gene replacement. Transketolase activity was below the level of detection in mutant crude extracts. Transketolase protein could be detected as a single protein band of the expected size by Western-blot analysis in wild-type strains but not in the delection mutant. Deletion of TKL1 led to a reduced but distinct growth in synthetic medium without an aromatic amino-acid supplement. We also isolated double and triple mutants for transketolase (tkl1), transaldolase (tal1), and glucose 6-phosphate dehydrogenase (zwf1) by crossing the different mutants. A tal1 tkl1 double mutant grew nearly like wild-type in rich medium. Only the tkl1 zwf1 double and the tal1 tkl1 zwf1 triple mutant grew more slowly than the wild-type in rich medium. This growth defect could be partly alleviated by the addition of xylulose but not ribose. The triple mutant still grew slowly on a synthetic mineral salts medium without a supplement of aromatic amino acids. This suggests the existence of an alternative but limited source of pentose phosphates and erythrose 4-phosphate in the tkl1 zwf1 double mutants. Hybridization with low stringency showed the existence of a sequence with homology to transketolase, possibly a second gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Pyruvate decarboxylase ; Pyruvate kinase ; Signalling ; Glycolysis mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pyruvate decarboxylase, PDCase, activity in wild-type yeast cells growing on ethanol is quite low but increases up to tenfold upon addition of glucose, less with galactose and only slightly with glycerol. PDCase levels in glycolysis mutant strains growing on ethanol or acetate were higher than in the wild-type strain. These levels correlated with the sum of the concentrations of three-carbon glycolytic metabolites. The highest accumulation was observed in a fructose bisphosphate aldolase deletion mutant concomintant with the highest PDCase activity wild-type level. On the other hand, the PDCase levels in the different mutants again correlated with the sum of the concentrations of the three-carbon glycolytic metabolites. This was interpreted to mean that full induction of PDCase activity requires the accumulation of hexose-and triosephosphates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Acetyl-CoA ; l-Lysine N6 ; acetytransferase ; Lysine catabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The carbon catabolism of l-lysine starts in Saccharomyces cerevisiae with acetylation by an acetyl-CoA: l-lysine N6-acetyltransferase. The enzyme is strongly induced in cells grown on l-lysine as sole carbon source and has been purified about 530-fold. Its activity was specific for acetyl-CoA and, in addition to l-lysine, 5-hydroxylysine and thialysine act as acetyl acceptor. The following apparent Michaelis constants were determined: acetyl-CoA 0.8 mM, l-lysine 5.8 mM, dl-5-hydroxylysine 2.8 mM, l-thialysine 100 mM. The enzyme had a maximum activity at pH 8.5 and 37°C. Its molecular mass, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 52 kDa. Since the native molecular mass, determined by gel filtration, was 48 kDa, the enzyme is a monomer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 124 (1993), S. 131-140 
    ISSN: 1573-4919
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; H+-ATPase ; intracellular pH ; carboxy-seminaphthorhodafluor-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We examined cytoplasmic pH regulation inSchizosaccharomyces pombe andSaccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 fromS. pombe was much slower than leakage fromC. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 forS. pombe and 6.6 forS. cerevisiae. We found that internal pH inS. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater inS. cerevisiae than inS. pombe. The plasma membrane H+-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 μM in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 μM forS. cerevisiae and 490 μM forS. pombe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 22 (1993), S. 1177-1180 
    ISSN: 1573-5028
    Keywords: abscisic acid ; developmental regulation ; heat shock proteins ; Oryza sativa ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Antibodies raised against yeast heat shock protein (HSP) 104 recognized a heat-inducible polypeptide with a molecular mass of 110 kDa in shoot tissue of young rice seedlings. Root tissue of the same age showed no immuno-reaction with yeast HSP 104 antibodies. The 110 kDa polypeptide of rice was also shown to be abscisic acid-inducible in young seedlings. Though this polypeptide was seen to be constitutively present in the flag leaf of 90-day-old field-grown plant, it was not much affected by either heat shock or abscisic acid in this case.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Ribosomal protein genes ; Transcription activation ; cAMP ; Growth control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rate of ribosomal protein gene (rp-gene) transcription in yeast is accurately adjusted to the cellular requirement for ribosomes under various growth conditions. However, the molecular mechanisms underlying this co-ordinated transcriptional control have not yet been elucidated. Transcriptional activation of rp-genes is mediated through two different multifunctional trans-acting factors, ABF1 and RAP1. In this report, we demonstrate that changes in cellular rp-mRNA levels during varying growth conditions are not parallelled by changes in the in vitro binding capacity of ABF1 or RAP1 for their cognate sequences. In addition, the nutritional upshift response of rp-genes observed after addition of glucose to a culture growing on a non-fermentative carbon source turns out not to be the result of increased expression of the ABF1 and RAP1 genes or of elevated DNA-binding activity of these factors. Therefore, growth rate-dependent transcription regulation of rp-genes is most probably not mediated by changes in the efficiency of binding of ABF1 and RAP1 to the upstream activation sites of these genes, but rather through other alterations in the efficiency of transcription activation. Furthermore, we tested the possibility that cAMP may play a role in elevating rp-gene expression during a nutritional shift-up. We found that the nutritional upshift response occurs normally in several mutants defective in cAMP metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; UV damage ; Mating type ; Inducible repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The prior UV irradiation of α haploid Saccharomyces cerevisiae with a UV dose of 25 J/m2 substantially increases the repairability of damage subsequently induced by a UV dose of 70 J/m2 given 1 h after the first irradiation. This enhancement of repair is seen at both the MATa and HMLα loci, which are, respectively, transcriptionally active and inactive in α haploid cells. The presence in the medium of the protein synthesis inhibitor, cycloheximide in the period between the two irradiations eliminated this effect. Enhanced repair still occurred if cycloheximide was present only after the final UV irradiation. This indicated that the first result is not due to cycloheximide merely blocking the synthesis of repair enzymes associated with a hypothetical rapid turnover of such molecules. The enhanced repairability is not the result of changes in chromatin accessibility without protein synthesis, merely caused by the repair of the damage induced by the prior irradiation. The data clearly show that a UV-inducible removal of pyrimidine dimers has occurred which involves the synthesis of new proteins. The genes known to possess inducible promoters, and which are involved in excision are RAD2, RAD7, RAD16 and RAD23. Studies with the rad7 and rad16 mutants which are defective in the ability to repair HMLα and proficient in the repair' of MATα showed that in rad7, preirradiation enhanced the repair at MATα, whereas in rad16 this increased repair of MATα was absent. The preirradiation did not modify the inability to repair HMLα in either strain. Thus RAD16 has a role in this inducible repair. Inducible repair is also absent in a rad2 strain which cannot repair MATα or HMLα after a single UV dose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Sodium efflux ; Lithium efflux ; ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ENA2 gene encoding a P-type ATPase involved in Na+ and Li+ effluxes in Saccharomyces cerevisiae has been isolated. The putative protein encoded by ENA2 differs only in thirteen amino acids from the protein encoded by ENA1/PMR2. However, ENA2 has a very low level of expression and for this reason did not confer significant Li+ tolerance on a Li+ sensitive strain. ENA1 and ENA2 are the first two units of a tandem array of four highly homologous genes with probably homologous functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 375-384 
    ISSN: 1617-4623
    Keywords: Regulation of meiosis ; Saccharomyces cerevisiae ; IME1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MATα2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Imel protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to α-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcription ; spt mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mutations in the SPT4 gene of Saccharomyces cerevisiae were isolated as suppressors of δ insertion mutations that interfere with adjacent gene transcription. Recent genetic evidence indicates that the SPT4 protein functions with two other proteins, SPT5 and SPT6, in some aspect of transcription initiation. In this work we have characterized the SPT4 gene and we demonstrate that spt4 mutations, like spt5 and spt6 mutations, cause changes in transcription. Using the cloned SPT4 gene, spt4 null mutations were constructed; in contrast to spt5 and spt6 null mutants, which are inviable, spt4 null mutants are viable and have an Spt− phenotype. The DNA sequence of the SPT4 gene predicts a protein product of 102 amino acids that contains four cysteine residues positioned similarly to those of zinc binding proteins. Mutational analysis suggests that at least some of these cysteines are essential for SPT4 function. Genetic mapping showed that SPT4 is a previously unidentified gene that maps to chromosome VII, between ADE6 and CLY8.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 463-466 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; cyrl-2 ; Nonsense mutation ; CAMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary cyrl-2 is a temperature-sensitive mutation of the yeast adenylate cyclase structural gene, CYR1. The cyrl-2 mutation has been suggested to be a UGA mutation since a UGA suppressor SUP201 has been isolated as a suppressor of the cyrl-2 mutation. Construction of chimeric genes restricted the region containing the cyrl-2 mutation, and the cyrl-2 UGA mutation was identified at codon 1282, which lies upstream of the region coding for the catalytic domain of adenylate cyclase. Alterations in the region upstream of the cyrl-2 mutation site result in null mutations. The complete open reading frame of the cyrl-2 gene expressed under the control of the GAL1 promoter complemented cyrl-dl in a galactose-dependent manner. These results suggest that at the permissive temperature weak readthrough occurs at the cyrl-2 mutation site to produce low levels of active adenylate cyclase. An endogenous suppressor in yeast cells is assumed to be responsible for this readthrough.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 238 (1993), S. 6-16 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; cAMP MKS1 ; GAL11
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to isolate genes that function downstream of the Ras-cAMP pathway in Saccharomyces cerevisiae, a YEp13-based genomic library was screened for clones that inhibit growth of cells with diminished A-kinase activity. One such gene, MKS1, was found to encode a hydrophilic 52 kDa protein that shares weak homology with the yeast SPT2/SIN1 gene product. Three lines of evidence suggest that the MKS1 gene product is a negative regulator downstream of the Ras-cAMP pathway: (i) overexpression of MKS1 inhibits growth of cyrl disruptant cells on YPD medium containing a low concentration of cAMP; (ii) overexpression of MKS1 does not affect TPK1 expression; and (iii) the temperature-sensitive cyrl-230 mutation is partially suppressed by mks1 disruption. The mks1 mutant shows similar phenotypes to gal11/spt13, i.e., it cannot grow on YPGal containing ethidium bromide at 25°C, or on YPGly or SGal at 37°C. The mks1 gal11 double mutant shows more marked phenotypic changes than the single mutants. These results suggest that MKS1 is involved in transcriptional regulation of several genes by cAMP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 240 (1993), S. 36-42 
    ISSN: 1617-4623
    Keywords: Yeast ; Saccharomyces cerevisiae ; DNA synthesis genes ; Cell cycle regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two mutants have been isolated in Saccharomyces cerevisiae in which transcripts from at least CDC8, CDC9, CDC21 (TMP1) and POL1 genes are expressed constitutively in cells blocked at START by use of either α-pheromone or the cdc28 mutation. The transcripts from these genes also persist in mutant stationary phase cells; however, cell cycle regulation of these four DNA synthesis genes occurs normally in late G1. The mutation therefore does not appear to lie in the MCB-DSC1 (MBF) system that controls the periodic regulation of the genes, but must affect some control mechanism regulating basal levels of expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1617-4623
    Keywords: Heat shock response ; HSP70 ; Saccharomyces cerevisiae ; RAS-CAMP pathway ; Multicopy suppressor of ira1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: abstract The MSI3 gene was isolated as a multicopy suppressor of the heat shock-sensitive phenotype of the iral mutation, which causes hyperactivation of the RAS-cAMP pathway. Overexpression of MSI3 also suppresses the heat shock-sensitive phenotype of the bcyl mutant. Determination of the DNA sequence of MSI3 revealed that MSI3 can encode a 77.4 kDa protein related to the HSP70 family. The amino acid sequence of Msi3p is about 30% identical to that of the Ssalp of Saccharomyces cerevisiae. This contrasts with the finding that members of the HSP70 family generally show at least 50% amino acid identity. The consensus nucleotide sequence of the heat shock element (HSE) was found in the upstream region of MSI3. Moreover, the steady-state levels of the MSI3 mRNA and protein were increased upon heat shock. These results indicate that the MSI3 gene encodes a novel HSP70-like heat shock protein. Disruption of the MSI3 gene was associated with a temperature sensitive growth phenotype but unexpectedly, thermotolerance was enhanced in the disruptant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 657-666 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Pyruvate decarboxylase ; Transcription ; Glucose induction ; Autoregulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulatory gene PDC2 was identified in a screen for mutations affecting pyruvate decarboxylase activity in yeast. I have cloned and sequenced this gene. The predicted protein of 925 amino acids has no homology to any sequence in the databases. However, the protein sequence is rich in asparagine and serine residues, as is often found for transcriptional regulators. The PDC2 deletion mutant exhibits a phenotype very similar to, but more severe than that of the point mutant: a strongly reduced pyruvate decarboxylase specific activity, slow, respiration-dependent growth on glucose, and accumulation of pyruvate. The activity of other glycolytic enzymes seems to be unaffected by the pdc2Δ mutation. Synthesis of pyruvate decarboxylase is regulated by PDC2 at the transcriptional level. Expression of the major structural gene for pyruvate decarboxylase, PDC1, is strongly reduced in pdc2Δ mutants. Transcription of the generally more weakly expressed PDC5 gene appears to be entirely abolished. However, glucose induction of pyruvate decarboxylase synthesis is unaffected. Thus, PDC2 is either important for a high basal level of PDC gene expression or it plays a positive role in the autoregulation that controls expression of PDC1 and PDC5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 680-684 
    ISSN: 1617-4623
    Keywords: Nitrogen mustard resistance ; Regulation of choline permease ; Co-regulation ; Phospholipid biosynthesis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An 815 by region of the promoter of the Saccharomyces cerevisiae gene CTR/HNM1, encoding choline permease was sequenced and its regulatory function analysed by deletion studies in an in-frame promoter-lacZ construct. In addition to the TATA box, a 10 by motif (consensus 5′-CATGTGAAAT-3′) was found to be mandatory for CTR/HNM1 expression. This ‘decamer’ motif is located between nucleotides −262 and −271 and is identical in 9 of 10 by with the regulatory motif found in the S. cerevisiae INO1 and CHO1 genes. Constructs with the 10 by sequence show high constitutive expression, while elimination or alterations at three nucleotide positions, of the decamer motif in the context of an otherwise unchanged promoter leads to total loss of β-galactosidase production. Expression of the CTR/HNM1 gene in wild-type cells is regulated by the phospholipid precursors inositol and choline; no such influence is seen in cells bearing mutations in the phospholipid regulatory genes INO2, INO4, and OPI1. There is no regulation by INO2 and OPI1 in the absence of the decamer motif. However constructs not containing this sequence (promoter intact to positions −213 or −152) are still controlled by INO4. Other substrates of the choline permease, i.e. ethanolamine, nitrogen mustard and nitrogen half mustard do not regulate expression of CTR/HNM1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1617-4623
    Keywords: Texas maize cytoplasmic male sterility ; Saccharomyces cerevisiae ; Mitochondria ; Image and flow cytometry ; 3,3′-Dihexyloxacarbocyanine iodide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The urf13TW gene, which is derived from the mitochondrial T-urf13 gene responsible for Texas cytoplasmic male sterility in maize, was expressed in Saccharomyces cerevisiae by targeting its translation product into mitochondria. Analysis by oxygraphy at the population level revealed that in the presence of methomyl the oxygen uptake of intact yeast cells carrying the targeted protein is strongly stimulated only with ethanol as respiratory substrate and not with glycerol, lactate, pyruvate, or acetate. When malate is the substrate oxidized by isolated mitochondria, interaction between the targeted protein and methomyl results in significant inhibition of oxygen uptake. This inhibition is eliminated and oxygen uptake is stimulated by subsequent addition of NAD+. Using 3,3′-dihexyloxacarbocyanine iodide [DiOC6(3)] as probe, interactive laser scanning and flow cytometry, which permit analysis at the individual cell level, demonstrated that specific staining of the mitochondrial compartment is obtained and that DiOC6(3) fluorescence serves as a measure of the membrane potential. Finally, it was shown that, as in T cytoplasm maize mitochondria, HmT toxin and methomyl dissipate the membrane potential of yeast mitochondria that carry the foreign protein. Furthermore, the results suggest that the HmT toxin and methomyl response is related to the plasmid copy number per cell and that the deleterious effect induced by HmT toxin is stronger than that of methomyl.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Nuclear pet mutants ; Mitochondrial transcription ; Mutant RNA polymerase ; Specificity factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The temperature-sensitive yeast mutant pet-ts798 is characterized by an altered mitochondrial transcription apparatus. The mutation has previously been shown to map in the RP041 gene encoding the core enzyme of mitochondrial RNA polymerase. In the present study the rpo41/pet-ts798 allele was cloned and sequenced, demonstrating that the mutant phenotype is caused by a single amino acid change in a conserved region of the core polymerase. The nuclear gene MTF1, previously isolated as a high copy suppressor of mutant rpo41/pet-ts798, and its gene product were characterized in more detail. Import of a MTF1-COXIV fusion protein in vivo and also import studies with in vitro synthesized MTF1 precursors indicate that MTF1 is a mitochondrial protein and that no apparent cleavage occurs during its import into mitochondria. DNA-binding assays demonstrate that the MTF1 protein alone interacts with DNA in a non-specific manner. An antibody directed against specificity factor MTF1 was raised and used for immunological quantification experiments. The results indicate that suppression is mediated by an increased level of MTF1 protein in mitochondria of the rpo41/pet-ts798 mutant. Possible implications of this finding for the mechanism of suppression are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1617-4623
    Keywords: DNA bending ; Autonomously replicating sequence ; Saccharomyces cerevisiae ; Basidiomycete ; Linear plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Previous studies have indicated that DNA bending is a general structural feature of sequences (ARSs) from cellular DNAs of yeasts and nuclear and mitochondrial genomic DNAs of other eukaryotes that are capable of autonomous replication in Saccharomyces cerevisiae. Here we showed that bending activity is also tightly associated with S. cerevisiae ARS function of segments cloned from mitochondrial linear DNA plasmids of the basidiomycetes Pleurotus ostreatus and Lentinus edodes. Two plasmids, designated pLPO2-like (9.4 kb), and pLPO3 (6.6 kb) were isolated from a strain of P. ostreatus. A 1029 by fragment with high-level ARS activity was cloned from pLPO3 and it contained one ARS consensus sequence (A/T)TTTAT(A/G)TTT(A/T) indispensable for activity and seven dispersed ARS consensus-like (10/11 match) sequences. A discrete bent DNA region was found to lie around 500 by upstream from the ARS consensus sequence (T-rich strand). Removal of the bent DNA region impaired ARS function. DNA bending was also implicated in the ARS function associated with a 1430 by fragment containing three consecutive ARS consensus sequences which had been cloned from the L. edodes plasmid pLLE1 (11.0 kb): the three consecutive ARSs responsible for high-level ARS function occurred in, and immediately adjacent to, a bent DNA region. A clear difference exists between the two plasmid-derived ARS fragments with respect to the distance between the bent DNA region and the ARS consensus sequence(s).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 306-310 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Gene replacement ; Donation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We describe here a new method for the introduction of non-selectable alleles into Saccharomyces cerevisiae, gene replacement by donation. This method only requires the availability of an autonomously replicating, selectable plasmid containing the allele to be introduced into yeast. The plasmid is digested at a restriction site (or sites) within this allele, and introduced into yeast by transformation. In the course of double-strand break repair, the entering plasmid donates genetic information to the chromosome, replacing the chromosomal allele in a gene conversion-like event. Gene replacement events are identified by a phenotypic screen of the transformants. When necessary, the transforming plasmid may be subsequently lost by segregation during permissive growth. We have studied several parameters affecting the utility of this protocol as a method of gene replacement. Together with our previous results, the results show gene replacement by donation to be a useful, facile method, yielding gene replacement in up to 1.5% of transformants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Formaldehyde hyper-resistance ; Alcohol dehydrogenase ; Glutathione ; Inducibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A 3.7 kb DNA fragment of yeast chromosome IV has been sequenced that contains the SFA gene which, when present on a multi-copy plasmid in Saccharomyces cerevisiae, confers hyper-resistance to formaldehyde. The open reading frame of SFA is 1158 by in size and encodes a polypeptide of 386 amino acids. The predicted protein shows strong homologies to several mammalian alcohol dehydrogenases and contains a sequence characteristic of binding sites for NAD. Overexpression of the SFA gene leads to enhanced consumption of formaldehyde, which is most probably the reason for the observed hyper-resistance phenotype. In sfa:LEU2 disruption mutants, sensitivity to formaldehyde is correlated with reduced degradation of the chemical. The SFA gene shares an 868 by divergent promoter with UGX2 a gene of yet unknown function. Promoter deletion studies with a SFA promoter-lacZ gene fusion construct revealed negative interference on expression of SFA by upstream sequences. The upstream region between positons − 145 and − 172 is totally or partially responsible for control of inducibility of SFA by chemicals such as formaldehyde (FA), ethanol and methyl methanesulphonate. The 41 kDa SFA-encoded protein was purified from a hyper-resistant transformant; it oxidizes long-chain alcohols and, in the presence of glutathione, is able to oxidize FA. SFA is predicted to code for a long-chain alcohol dehydrogenase (glutathione-dependent formaldehyde dehydrogenase) of the yeast S. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 238 (1993), S. 315-324 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Nuclear gene ; Mitochondrial enzyme ; Lactate dehydrogenase ; Flavoprotein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Saccharomyces cerevisiae the utilization of lactate occurs via specific oxidation of l- and d-lactate to pyruvate catalysed by l-lactate ferricytochrome c oxidoreductase (L-LCR) (EC 1.1.2.3) encoded by the CYB2 gene, and d-lactate ferricytochrome c oxidoreductase (D-LCR) (EC 1.1.2.4), respectively. We selected several lactate− pyruvate+ mutants in a cyb2 genetic background. Two of them were devoid of D -LCR activity (dld mutants, belonging to the same complementation group). The mutation mapped in the structural gene. This was demonstrated by a gene dosage effect and by the thermosensitivity of the enzyme activity of thermosensitive revertants. The DLD gene was cloned by complementation for growth on d-, l-lactate in the strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. The minimal complete complementing sequence was localized by subcloning experiments. From the sequence analysis an open reading frame (ORF) was identified that could encode a polypeptide of 576 amino-acids, corresponding to a calculated molecular weight of 64000 Da. The deduced protein sequence showed significant homology with the previously described microsomal flavoprotein l-gulono-γ-lactone oxidase isolated from Rattus norvegicus, which catalyses the terminal step of l-ascorbic acid biosynthesis. These results are discussed together with the role of L-LCR and D-LCR in lactate metabolism of S. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; DNA amplification ; Minisatellites ; VNTR ; MS1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Minisatellites comprise arrays of tandemly repeated short DNA sequences which show extensive variation in repeat unit number. The mechanisms that underlie this length variation are not understood. In order to study processes influencing length changes of minisatellites, we integrated the human minisatellite MS1 into a haploid strain of the yeast Saccharomyces cerevisiae. Frequent spontaneous generation of MS1 alleles with new lengths were observed in this yeast strain. Hence it is concluded that recombination between members of a pair of homologous chromosomes is not a prerequisite for the generation of length changes in MS1 in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Centromere and promoter factor ; Chromatin ; SPT ; Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Saccharomyces cerevisiae, the CPF1 gene encodes a ccntromere binding protein that also plays a role in transcription; cpf1 strains are methionine auxotrophs. In this paper we describe four strains that are methionine prototrophs despite containing a defective CPF1 gene. These strains, which contain mutations at either the SPT21, RPD1 (SINS), RPD3 or CCR4 loci, have defective centromere function and a chromatin structure around the CDEI elements in the MET25 promoter characteristic of strains lacking CPF1. This indicates that the roles of CPF1 in transcription, centromere function and chromatin modulation around CDEI sites are different. We propose that CPF1 functions to overcome the repressing action, mediated via inactive chromatin, of proteins such as SPT21 or RPDI (SIN3) on gene expression. The absence of proteins such as SPT21 or RPD1 (SIN3) relieves this respression and explains how methionine prototrophy is restored in the absence of CPF1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 240 (1993), S. 414-418 
    ISSN: 1617-4623
    Keywords: Cruciform DNA ; Endonuclease ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have found a cruciform cutting endonuclease in the yeast, Saccharomyces cerevisiae, which localizes to the mitochondria. This activity apparently is associated with the mitochondrial inner membrane since the activity is not released into solution by osmolysis, in contrast to the matrix enzyme, isocitrate dehydrogenase. The cruciform cutting activity appears to be encoded by CCE1. This gene has been shown to encode one of the major cruciform cutting endonucleases present in a yeast cell. In ccel strains, which lack CCE1 endonuclease activity, the mitochondrial cruciform cutting endonucleolytic activity is also absent. Since CCE1 is allelic to MGT1, a gene required for the highly biased transmission of petite mitochondrial DNA in crosses between ϱ+ and hypersuppressive ϱ− cells, it seems likely that the CCE1 endonuclease functions within mitochondria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 213-224 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Transcriptional regulation ; Protein phosphorylation ; Stringent response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using various mutant strains and nutritional manipulations, we investigated a potential role for cyclic AMP (cAMP) in the regulation of mitochondrial (mt) gene expression in the yeast Saccharomyces cerevisiae. In RAS mutants known to have either abnormally low or high cellular levels of this nucleotide, we show that both mt transcription rate and overall mt transcript levels vary directly with cellular cAMP levels. We further show that nutritional downshift of actively growing cells causes a severe, rapid fall in cAMP levels, and that this fall is concomitant with the stringent mt transcriptional curtailment that we and others have previously shown to follow this nutritional manipulation. In in vitro mt transcription assays using intact organelles from downshifted and actively growing cells, stringently curtailed mt gene expression can be restored to 75% of control levels by addition of cAMP to the assay mix. Consistent with these observations a RAS2 vall9mutant strain, which cannot adjust cAMP levels in response to external stimuli, shows no mt stringent response following nutritional downshift. We also demonstrate a significant but transient increase in both mt transcript levels and mt transcription rate following shift of actively respiring wild-type cells to glucose-based medium, a manipulation known to cause a short-lived pulse of cAMP in yeast; similar manipulation of the RAS2 vall9mutant strain generates no such response. Taken together all these observations indicate that cellular cAMP levels are involved in the regulation of mt transcription in yeast. Moreover, the lack of a mt stringent transcriptional response following downshift in a strain in which the BCY1 gene had been insertionally inactivated suggests that cAMP may influence mt transcription via a mt cAMP-dependent protein kinase. These results link mt gene expression with mechanisms governing growth control and nutrient adaptation in yeast, and they provide a means by which nit gene expression might be coordinated with that of related nuclear genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1617-4623
    Keywords: Mating pheromone ; Saccharomyces cerevisiae ; Signal transduction ; STE5 ; Ste20 protein kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The β and γ subunits of the mating response G-protein in the yeast Saccharomyces cerevisiae have been shown to transmit the mating pheromone signal to downstream components of the pheromone response pathway. A protein kinase homologue encoded by the STE20 gene has recently been identified as a potential G βγ , target. We have searched multicopy plasmid genomic DNA libraries for high gene dosage suppressors of the signal transduction defect of ste20 mutant cells. This screen identified the STE5 gene encoding an essential component of the pheromone signal transduction pathway. We provide genetic evidence for a functional interrelationship between the STE5 gene product and the Ste20 protein kinase. We have sequenced the STE5 gene, which encodes a predicted protein of 917 amino acids and is specifically transcribed in haploid cells. Transcription is slightly induced by treatment of cells with pheromone. Ste5 has homology with Fart, a yeast protein required for efficient mating and the pheromone-inducible inhibition of a G1 cyclin, Cln2. A STE5 multicopy plasmid is able to suppress the signal transduction defect of farl null mutant cells suggesting that Ste5, at elevated levels, is able functionally to replace Fart. The genetically predicted point of function of Ste5 within the pheromone signalling pathway suggests that Stc5 is involved in the regulation of a Gβγ-activated protein kinase cascade which links a G-protein coupled receptor to yeast homologues of mitogen-activated protein kinases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 280-286 
    ISSN: 1617-4623
    Keywords: Yeast RAS ; RAS-CAMP pathway ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; RNA polymerase II ; Cyclins ; Transcription ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Saccharomyces cerevisiae cells harboring the temperature-sensitive mutation rpo21-4, in the gene encoding the largest subunit of RNA polymerase II, were shown to be partially impaired for cell-cycle progress at a permissive temperature, and to become permanently blocked at the cell-cycle regulatory step, START, at a restrictive temperature. The rpo21-4 mutation was lethal in combination with cdc28 mutations in the p34 protein kinase gene required for START. Transcripts of the CLN1 and CLN2 genes, encoding G1-cyclin proteins that, along with p34, are necessary for START, were decreased in abundance by the rpo21-4 mutation at a restrictive temperature. Increased G1-cyclin production, by expression of the CLN1 or CLN2 genes from a heterologous GAL promoter, overcame the rpo21-4 — mediated START inhibition, but such mutant cells nevertheless remained unable to proliferate at a restrictive temperature. These findings reveal that START can be particularly sensitive to an impaired RNA polymerase II function, presumably through effects on G1-cyclin expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1617-4623
    Keywords: Transcriptional activators ; O2 gene ; Zea mays ; bZIP proteins ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this research was to determine whether the structural homology between the O2 gene, a maize transcriptional activator, and the GCN4 gene, a yeast transcriptional factor, is reflected at the level of function. The O2 cDNA was cloned in the yeast expression vector pEMBLyex4 under the control of a hybrid, inducible promoter, and used to transform the yeast Saccharomyces cerevisiae. Transformed yeast cells produced O2 mRNA and a polypeptide immunoreactive with anti-O2 antibodies during growth in galactose. The heterologous protein was correctly translocated into the yeast nuclei, as demonstrated by immunofluorescence, indicating that the nuclear targeting sequences of maize are recognized by yeast cells. Further experiments demonstrated the ability of O2 to rescue a gcn4 mutant grown in the presence of aminotriazole, an inhibitor of the HIS3 gene product, suggesting that O2 activates the HIS3 gene, gene normally under control of GCN4. It was shown that the O2 protein is able to trans-activate the HIS4 promoter in yeast cells and binds to it in vitro. The sequence protected by O2, TGACTC, is also the binding site for GCN4. Finally, the expression of O2 protein in yeast did not produce alterations during batch growth at 30° C, while transformants expressing O2 protein showed a conditionally lethal phenotype when grown in galactose at 36° C; this phenotype mimics the behaviour of gcd mutants. The results support the idea that basic mechanisms of transcription control have been highly conserved in eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 236 (1993), S. 443-447 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Protein kinases ; Protein Kinase C ; Growth control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Probes derived from cDNAs encoding isozymes of rat protein kinase C (PKC) were used to screen the genome of the budding yeast Saccharomyces cerevisiae. We reported previously the isolation of the yeast PKC1 gene, a homolog of the α, β, and γ subspecies of mammalian PKC. Here we report the isolation and genetic characterization of a pair of previously described genes (YPK1 and YPK2) which are predicted to encode protein kinases that share 90% amino acid identity with each other and 44–46% identity with various isozymes of PKC throughout their putative catalytic domains. Deletion of YPK2 resulted in no apparent phenotypic defect, but loss of YPK1 resulted in slow growth. Cells deleted for both YPK1 and YPK2 were defective in vegetative growth, indicating that the protein kinases predicted to be encoded by these genes are functionally overlapping and play an essential role in the proliferation of yeast cells. The YPK1 gene was mapped to the left arm of chromosome XI and YPK2 was mapped to the right arm of chromosome XIII.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-6881
    Keywords: Rieske iron-sulfur protein, RIP1 ; Saccharomyces cerevisiae ; mitochondria ; bc 1 complex ; QCR9 ; iron-sulfur cluster, mitochondrial targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 583-586 
    ISSN: 1573-0972
    Keywords: Cell-free extracts ; plasmids ; recombination ; Saccharomyces cerevisiae ; topo-isomerase mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 662-663 
    ISSN: 1573-0972
    Keywords: Biosynthesis ; invertase ; molasses ; Saccharomyces cerevisiae ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Biosynthesis of invertase by Saccharomyces cerevisiae 01K32 was inversely proportional to the concentration of sugarcane blackstrap molasses included in the medium. In a fermenter, an intracellular invertase activity of 440 U/g dry cells was obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 63 (1993), S. 343-352 
    ISSN: 1572-9699
    Keywords: alcoholic fermentation ; chemostat culture ; Crabtree effect ; respiration ; Saccharomyces cerevisiae ; yeasts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts.Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called ‘Crabtree effect’ probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect inS. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast.S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. ‘Non-Saccharomyces’ yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeastCandida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 70-72 
    ISSN: 1573-0972
    Keywords: Beer ; brewing ; non-head forming ale yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The physiological characteristics of two strains of brewery ale yeasts,Saccharomyces cerevisiae, with sedimentation abilities, were investigated to see if the strains were suitable for lager beer production. Compared with typical industrial ale strains ofS. cerevisiae and lager strains ofS. uvarum (nowS. cerevisiae), the investigated strains differ in fermentation dynamics, as well as in biological properties. The differences, however, particularly between the two strains and the lager brewing yeasts, were not significant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 617-624 
    ISSN: 0006-3592
    Keywords: crossflow filtration ; microfiltration ; baker's yeast ; Saccharomyces cerevisiae ; molasses ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Factors affecting the performance of crossflow filtration were investigated with a thin-channel module and yeast cells. In crossflow filtration of Saccharomyces cerevisiae cells cultivated with YPD medium (Yeast extract, polypeptone, and dextrose) and suspended in saline, a steady state was attained within several minutes when the cell concentration was low and the circulation flow rate was high. The steady-state flux and the change in flux during the initial unsteady state were explained well by conventional filtration theory, with the amount of cake deposited and the mean specific resistance to the cake measured in a dead-end filtration apparatus used in calculation. When the circulation flow rate was lower than a critical value, a part of the channel of the crossflow filtration module was plugged with cell cake, and thus the steady-state flux was low. In crossflow filtration of suspensions of commercially available baker's yeast, the flux gradually decreased, and the flux after 8 h of filtration was lower than the value calculated by filtration theory. Fine particles contaminating the baker's yeast was responsible for the decrease. A similar phenomenon was responsible for the decrease. A similar phenomenon was observed in crossflow filtration of a broth of S. cerevisiae cells cultivated in molasses medium, which also contains such particles, had no effect of the permeation flux during crossflow filtration. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 398-400 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; bioconversion ; fructose diphosphate production ; whey ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli β-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. We showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 801-810 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; autoselection ; plasmid stability ; cloned gene expression ; medium enrichment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Saccharomyces cerevisiae autoselection strains with mutations in the ura3, fur1, and urid-k genes have been obtained through a sequential isolation procedure. This autoselection system is an extension of one described by Loison et al. The mutations effectively block both the pyrimidine biosynthetic and salvage pathways and in combination are lethal to the host. Therefore, a plasmidencoded URA3 gene is essential for cell viability regardless of the growth conditions, and complex (traditionally nonselective) media can be employed without the risk of plasmid loss. The effects of medium enrichment on growth and cloned gene product synthesis were examined in batch culture for two autoselection strains. The plasmid gene product β-galactosidase was under the control of the yeast GAL1 promoter, and two methods of induction were employed; one strain was induced via temperature shift while the other was induced by galactose addition. Three nutrient media were investigated: a lean selective medium (SD), a richer semidefined medium (SDC), and a rich complex medium (YPD). The results demonstrated the improvements in cloned gene productivity possible when the growth medium is enriched, with up to 10-fold increases in β-galactosidase productivity observed. Plasmid instability and mutation reversion were not problems for the autoselection strains, even in uracil-containing medium. Short-term plasmid stabilities were approximately 90% in all three media tested. During continuous culture of the autoselection temperature-sensitive strain, long-term plasmid stability was excellent and β-galactosidase expression remained high after more than 25 residence times under inducing conditions. In contrast, both β-galactosidase specific activity and plasmid stability decreased linearly with time for an analogous nonautoselection strain. The introduced fur1 and uridk mutations were very stable; after more than 50 generations of growth in complex medium, stability values of 99-100% were measured. © 1993 Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 1352-1359 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; image analysis ; electronic particle counter ; viability test ; alcoholic fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A semiautomatic image analysis method, with minimal operator intervention, has been developed to characterize the morphology of yeast cells under the assumption that they have an ellipsoidic shape. The cells are observed by optical microscopy and the surface and the minor and major half-axes of the projection of the ellipsoid on the image plane are determined. Using this method, yeast size distributions and population kinetics (single and budding cells, cell clusters) are determined during alcoholic fermentations. Combination of image analysis with a methylene blue viability test is examined but the staining procedure induces a change in the size of the cells. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 361-369 
    ISSN: 0006-3592
    Keywords: gravitational sedimentation ; sedimentation ; fermentation ; continuous ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model for the sedimentation velocity in an inclined parallel plate sedimenter is proposed. The parameters of the alcoholic fermentation broth (cell density of Saccharomyces cerevisiae, density of the fermentation medium, viscosity of the broth at various alcohol and biomass contents) were determined experimentally. The sedimentation velocities were predicted under the various operational conditions and parameters, both of the broth (the alcohol concentration and cell content) and the sedimenter prototype (length, distance between the plates, and slope). The proposed model for the sedimentation velocity presented a good correlation with the experimental results of continuous sedimentation. These sedimenter prototypes were assembled and tested for efficiency of separation of yeast cell under conditions considered for interest for continuous alcoholic fermentation. A selective filter for the overflow composed of calcium alginate gel improved operation. A high operational stability, high separation efficiency (over 98%), and adequate settler residence times (about 20 min) were attained. The operational results permitted the operation of continuous alcoholic fermentation with cellular recycling effected exclusively by gravitational sedimentation, this characterizing a process of enormous industrial interest because of the operational simplicity and low operational and maintenance costs. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 43-49 
    ISSN: 0006-3592
    Keywords: calcium alginate reactor ; NADH regeneration ; Saccharomyces cerevisiae ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Saccharomyces cerevisiae cells immobilized in a calcium alginate fiber reactor were used as a source of alcohol dehydrogenase for the NAD+-to-NADH reaction. The reaction was catalyzed by enzyme in cells on the surface of the fiber. Internal diffusional effects were present. The enzyme cell concentration was optimized by harvesting cells finally grown under anaerobic conditions. The results were expressed as an apparent reaction rate constant that was independent of NAD+ and excess ethanol concentration, was slightly affected by flow rate above a minimum value, and increased with immobilized cell concentration in the fiber. The reaction was complete after 6 to 7 h under optimal conditions of 36°C and 9.5 pH. The latter was 0.5 pH units above the free enzyme optimum, indicating that microenvironmental effects were in evidence. © 1993 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 95-102 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; secretion ; MFα1 ; autoselection ; plasmid stability ; medium enrichment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFα1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for the autoselection strain, however, remained high and constant over this time period, and no reversion at the fur1 or urid-k locus was observed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 826-829 
    ISSN: 0006-3592
    Keywords: biosorption ; biosorbent ; Saccharomyces cerevisiae ; cadmium biosorption ; metal uptake ; brewer's yeasts ; baker's yeasts ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles indicate the possibility of a different metal-sequestering mechanism when compared to dry nonliving yeasts which did not usually accumulate more than 20 mg Cd/g. The uptake of cadmium was relatively fast, 75% of the sorption completed in less than 5 min. © 1993 Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 1066-1074 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; SUC2 ; mathematical model ; conjugate gradient optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The aim of this study is to determine the medium feeding strategy to maximize the invertase productivity of recombinant Saccharomyces Cerevisiae using a fed-batch mode of operation. The yeast contains the plasmid, pRB58, which contains the yeast SUC2 gene, coding for the enzyme invertase. The expression of this gene is repressed at high glucose levels. A Goal-oriented model is development to describe the kinetics of fed-batch fermentations. This simple model could quantitatively describe previous experimental results. A conjugate gradient algorithm is then used, in conjunction gradient algorithm is then used, in conjunction with this mathematical model, to compute the optimum feed rate for maximization of invertase productivity. The optimal feeding procedure results in an initial high cell growth phase followed by a high invertase production phase. © 1993 Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 33-42 
    ISSN: 0749-503X
    Keywords: Heat shock ; stress response ; cell cycle ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Rapidly growing cells of Saccharomyces cerevisiae are sensitive to heat shock, while non-growing stationary phase cells are highly resistant. We find that slowly growing cells have an intermediate degree of heat shock resistance that can be nearly as great as that of stationary phase cells. This resistance is correlated both with slow growth and with carbon catabolite derepression. Slowly growing cells also showed resistance to Zymolyase digestion of their cell walls. The stress resistance is a property of all the cells in the culture, and cell cycle position makes little difference to the degree of stress resistance. At least some of the properties normally associated with stationary phase cells do not require residence in stationary phase or any other particular compartment of the cell cycle. Stress resistance may be due to a diverse set of physiological adaptations available to cells regardless of their position in the cell cycle. That is, although stress resistance and stationary phase are often correlated, neither is the cause of the other.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 141-150 
    ISSN: 0749-503X
    Keywords: Protein kinase ; Saccharomyces cerevisiae ; KIN3 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have isolated a single gene from the yeast Saccharomyces cerevisiae encoding a potential 800 amino acid polypeptide of calculated Mr 90 098 Da. This protein consists of an N-terminal region that shares significant homology with the catalytic domains of several serine- and threonine-specific protein kinases, as well as a large, unique, C-terminal domain of unknown function. Haploid disruption mutants are viable and do not exhibit any readily observable growth defects under varying conditions of temperature, nutrients or osmotic strength. Due to the apparent structural similarity between this kinase and the protein products of the KIN1 and KIN2 genes, we have chosen to name this new gene KIN3.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 411-418 
    ISSN: 0749-503X
    Keywords: L-A virus ; non-Mendelian genetics ; Saccharomyces cerevisiae ; yeast killer system ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The cytoplasmically inherited M double-stranded (ds) RNA genome segment of killer virus of Saccharomyces cerevisiae is heat-curable in some yeast strains but not in others. Temperature sensitivity is conferred on both M1 and M2 dsRNA satellite virus segments by the L-A-HN allele of the killer helper virus genome, but not by the L-A-H allele. Both diploidy and mating type heterozygosity of the host cell are also correlated with increased virus curability.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 495-506 
    ISSN: 0749-503X
    Keywords: Nuclear migration ; protein repeats ; cell cycle ; Saccharomyces cerevisiae ; nutrient starvation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have isolated a mutant (rvs272) of the yeast (Saccharomyces cerevisiae) that displays an altered phenotype in stationary phase. It shows a high proportion of large-budded cells with two non-segregated nuclei staying in the mother cell. This phenotype is also expressed in various conditions when cells are synchronized, energy depleted or treated with the antimitotic drug benomyl. The RVS272 gene has been identified as the NUM1 gene already described. This gene presents a 192 bp tandemly repeated motif and we show that the number of repeats can vary from 1 to about 24 among different strains, without apparently affecting the function of the encoded protein. We suggest that this protein could be involved in polymerization catalysis and/or stabilization of microtubules.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 0749-503X
    Keywords: Endomitosis ; heat treatment ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Diploid cells with ability to mate, hereafter referred to as diploid mater cells, were obtained at significant frequencies by the heat treatment of haploid spores at the early germination stage in Saccharomyces cerevisiae heterothallic strain CG5M (a/α diploid cells heterozygous for five auxotrophic markers). The highest frequency (ca. 11%) of diploidization was obtained from viable cells after heat treatment at 55°C for 10 min when spores were precultivated for 30 min in liquid medium to initiate the germination. The diploid mater cells obtained were homozygous for mating type and for the auxotrophic markers. The diploidization of a spore is thus concluded to be due to endomitotic events in germinating heat-treated spores.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 661-667 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome XI ; calcineurin B ; protein phosphatase ; acyl-carrier protein ; tRNALeu ; delta sequence ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A 6·8 kbp DNA fragment localized to the left arm of chromosome XI from Saccharomyces cerevisiae was sequenced and analysed (EMBL accession no. X69765). Two genes involved in protein phosphatase activity were identified: YCN2 and an open reading frame encoding a protein that shares 46% amino acid identity with the sds22+ protein from Schizosaccharomyces pombe. A comparison of the genomic YCN2 sequence with the published cDNA sequence suggests the presence of an intron near the 5′ end of the gene. Further sequence analysis suggests the presence of three additional genes near YCN2: a mitochondrial acyl-carrier protein, a gene encoding a putative hydrophobic protein, and a new gene coding for a tRNALeu (UAA) isoacceptor located near a delta sequence.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 251-266 
    ISSN: 0749-503X
    Keywords: Secretion ; virus-like particle ; double-stranded RNA ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: K1 killer strains of Saccharomyces cerevisiae secrete a polypeptide toxin to which they are themselves immune. The α and β components of toxin comprise residues 45-147 and 234-316 of the 316-residue K1 preprotoxin. The intervening 86-residue segment is called γ. A 26-residue signal peptide is removed on entry into the endoplasmic reticulum. The Kex2 protease excises the toxin components from the 290-residue glycosylated protoxin in a late Golgi compartment. Expression of a cDNA copy of the preprotoxin gene confers the complete K1 killer phenotype on sensitive cells. We now show that expression of immunity requires that α component and the N-terminal 31 residues of γ. An additional C-terminal extension, either eight residues of γ or three of four unrelated peptides, is also required. Expression of preprotoxin terminating at the α C-terminus, or lacking the γ N-terminal half of γ causes profound but reversible growth inhibition. Inhibition is suppressed in cis by the same 31 residues of γ required for immunity to exocellular toxin in trans, but not by the presence of β. Both immunity and growth inhibition are alleviated by insertions in α that inactivate toxin. Inhibition is not suppressed by kex2, chc1 or kre1 mutations, by growth at higher pH or temperature, or by normal K1 immunity. Inhibition, therefore, probably does not involve processing of the α toxin component at its N-terminus or release from the cell and binding to glucan receptors. Some insertion and substitution mutations in γ severely reduce toxin secretion without affecting immunity. They are presumed to affect protoxin folding in the endoplasmic reticulum and translocation to the Golgi.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome II ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The nucleotide sequence of a fragment of 4867 base pairs of Saccharomyces cerevisiae chromosome II has been determined. The sequence contains three complete open reading frames. In addition to the already known gene RPB5, coding for a subunit shared by all three DNA directed RNA polymerases, two new open reading frames could be identified. YBR12.03 codes for a protein of 183 amino acids with homology to one of the proteins of the Bacillus subtilis riboflavin biosynthesis operon (RibG). Deletion mutants of YBR12.03 can germinate but stop growing after five to seven cell divisions on YPD. Supplementation with high concentrations of riboflavin does promote growth. YBR12.05 codes for a protein of 386 amino acids with homology to STI1, a stress-inducible protein of S. cerevisiae. Deletion mutants of YBR12.05 are not viable.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 815-823 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; flow cytometry ; cell protein distribution ; cell cycle model ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1103-1105 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; yeast ; genetic mapping ; sequencing ; essential genes ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: An 11 kb yeast DNA insertion isolated from a genomic library by complementation of a phosphofructokinase-deficient strain was used as a source for a partial sequence analysis. Four genes were shown to reside on this fragment, namely PFK2, ISP42, ERG2 and RAD14. PFK2 was mapped previously to the right arm of chromosome XIII, locating the latter three genes to the same chromosome.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome II ; DNA sequencing ; dUTPase ; S5 protein ; ARO4 gene ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The DNA sequence of a 6794 bp fragment located at about 100 kb from the right telomere of chromosome II from Saccharomyces cerevisiae has been determined. Sequence analysis reveals five open reading frames. One is the ARO4 gene encoding the 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase. Another presents strong homology with the S5 ribosomal protein from bacteria. The open reading frame YBR1705 shows significant homology with dUTPase, suggesting for the first time the existence of such an enzyme in S. cerevisiae.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1121-1130 
    ISSN: 0749-503X
    Keywords: Mitochondrial glycerol 3-phosphate dehydrogenase ; glycerol utilization ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A gut2 mutant of Saccharomyces cerevisiae is deficient in the mitochondrial glycerol 3-phosphate dehydrogenase and hence cannot utilize glycerol. Upon transformation of a gut2 mutant strain with a low-copy yeast genomic library, hybrid plasmids were isolated which complemented the gut2 mutation. The nucleotide sequence of a 3·2 kb PstI-XhoI fragment complementing a gut2 mutant strain is presented. The fragment reveals an open reading frame (ORF) encoding a polypeptide with a predicted molecular weight of 68·8 kDa. Disruption of the ORF leads to a glycerol non-utilizing phenotype. A putative flavin-binding domain, located at the amino terminus, was identified by comparison with the amino acid sequences of other flavoproteins. The cloned gene has been mapped both physically and genetically to the left arm of chromosome IX, where the original gut2 mutation also maps. We conclude that the presented ORF is the GUT2 gene and propose that it is the structural gene for the mitochondrial glycerol 3-phosphate dehydrogenase.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1177-1187 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; sterol ; desaturase ; ergosterol ; episterol ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: ERG3 is the structural gene in Saccharomyces cerevisiae for the sterol Δ5 desaturase that introduces the C5=6 unsaturation in ergosterol biosynthesis. The ERG3 gene has been mapped on chromosome XII, 13·7 centimorgans from GAL2 toward SPT8. The essentially of the gene is dependent on the conditions used for the cultivation of the mutants. Insertionally inactivated mutants of ERG3 fail to grow without ‘sparking’ levels of Δ5 sterols in heme-deficient cells, and are unable to grow on the respiratory substrates glycerol and ethanol.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 0749-503X
    Keywords: Fructose-1,6-bisphosphate ; hypersensitive sites ; nucleosome positioning ; psoralen crosslinking ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have studied the chromatin structure of the Saccharomyces cerevisiae FBP1 gene, which codes for fructose-1,6-bisphosphatase. A strong, constitutive, DNase I, micrococcal nuclease and S1 nuclease hypersensitive site is present close to the 3′ end of the coding region. In the repressed state, positioned nucleosomes exist around this site, and subtle changes occur in this nucleosomal organization upon derepression. A DNase I hypersensitive region is located within the promoter between positions -540 and -400 and it extends towards the gene in the derepressed state, leading to an alteration of nucleosomal positioning. Psoralen crosslinking of chromatin, which is used for the first time to study the mobility of restriction fragments from an RNA polymerase II gene, revealed that part of the promoter is nucleosome-free, in accordance with the results of DNase I digestion. A model is presented that, based on the chromatin structure, puts forward the hypothesis that the promoter UAS is located between - 540 and - 340. Finally, psoralen crosslinking, as well as digestions with micrococcal nuclease or restriction endonucleases suggests that most if not all of the copies of the active FBP1 gene are covered by nucleosomes.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1273-1277 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome II ; SUP45 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The nucleotide sequence of a fragment of 2728 base pairs of Saccharomyces cerevisiae chromosome II has been determined. The sequence contains two open reading frames, one of them being incomplete. Deletion mutants of YBR11.21 are viable. YBR11.20 is identical to the recessive omnipotent suppressor SUP45 (SUP1).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1287-1298 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome III ; protein sequence analysis ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The recently published sequence of yeast chromosome III (YCIII) provides the longest continuous stretch of a eukaryotic DNA molecule sequenced to date (315 kb). The sequence contains 116 distinct AUG-initiated open reading frames of at least 200 codons in length, more than 50 of which had not been described previously nor bear significant similarity to known proteins. We have analysed the YCIII known and putative-protein sequences with respect to significant statistical features which might reflect on structural and functional characteristics. The YCIII proteins have striking similarities and differences in their sequence attribute distributions compared to the corresponding distributions for all available yeast sequences and other protein collections. Nine examples of YCIII proteins with distinctive sequence features are discussed in detail.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome XI ; UBI2 ; MPLI ; ORF ; myosin ; USO1 ; Nopp140 ; membrane protein ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: As part of the EEC yeast genome program, a fragment of 15 820 bp from the right arm of Saccharomyces cerevisiae chromosome XI has been sequenced. This fragment corresponds roughly to the centromere-distal half of cosmid pUKG046 and to a small fragment of cosmid pUKG096, which are located approximately 150 kb from the centromere. It contains four open reading frames (ORFs) which encode potential proteins of more than 100 amino acid residues, as well as the UBI2 gene which carries an intron and does not show up as an ORF in the sequence analysis programs. One of the putative proteins, YKR412, is very rich in serine and has significant homology at the carboxyl end to Nopp140 phosphoprotein. YKR413 has several predicted transmembrane domains. YKR15, which has been recently cloned as the MPL1 gene, encodes a polypeptide that shows homologies to myosin heavy chain and to the cytoskeleton protein Uso1.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome XI ; FAS1 ; PUT3 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have sequenced two segments containing a total of 51·6 kb of the left arm from chromosome XI of Saccharomyces cerevisiae. The first segment of 38·5 kb contains 18 open reading frames (ORFs) of more than 100 amino acid residues. Five ORFs encode known yeast genes, including the fatty acid synthase gene (FAS1). Three new yeast genes were discovered with homologies to non-yeast genes and ten new genes without homologies to any known sequences. The second segment of 13 kb contains five ORFs with two known yeast genes and three unknown genes. The sequences from cosmid pUKG041 were obtained entirely with the walking primer strategy resulting in a very low overall sequence redundancy of 2·8 and an average reading length of 443 bases.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1065-1073 
    ISSN: 0749-503X
    Keywords: Permeases ; amino acids ; nitrogen regulation ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In the yeast Saccharomyces cerevisiae, there is a general amino acid permease, regulated by nitrogen catabolite repression, and several specific permeases whose nitrogen regulation is not well understood. In this study, we used continuous cultures to analyse the effect of nitrogen limitation and pH on the activity of general and several specific amino acid permeases. General permease activity was maximal in severe nitrogen limitation and diminished 400-fold in cells grown under nitrogen excess. For the specific permeases, the maximal uptake activity was found between mild limitation and nitrogen excess, while very small activity was detected under strict limitation. These results indicate that the nitrogen regulation of the general and the specific amino acid carriers is coordinated in such a way that no redundancy exists in amino acid transport. The regulation of the specific permeases was similar to that found for a system with anabolic function in nitrogen metabolism.All of these permeases are supposed to work through a proton symport mechanism, and thus rely on pH gradients to carry out their function. We studied the effect of pH on the kinetic constants of the general permease. Our results show that the effect of pH on the Km was different for acidic, neutral and basic amino acids, while the effect on Vmax was independent of the electrical charge of the amino acids.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 0749-503X
    Keywords: Yeast ; Saccharomyces cerevisiae ; chromosome VIII ; ARG4 ; meiosis ; SH3 domain ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have sequenced a 3296 bp segment of the chromosome VIII adjacent to the 3′ end of the ARG4 gene. This segment contains two divergently oriented open reading frames (YSC83 and YSC84). Northern blot analysis showed the presence of transcripts corresponding to these two open reading frames in vegetative cells. Levels of these transcripts increase five to ten-fold during sporulation. These two genes are not essential for vegetative growth or sporulation. Analysis of the putative protein products on the SwissProt database revealed that the C-terminal region of the Ysc84 protein contains a putative SH3 domain.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome II sequencing ; serine-hydroxymethyl-transferase ; RIB5 ; GAP ; GTP binding protein ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We report here the sequence of a 19,482 bp DNA segment of chromosome II of Saccharomyces cerevisiae. The fragment contains 16 open reading frames (ORFs) covering 74% of the sequence. Four predicted products present homology with known proteins. The ORF YBR1732 exhibits a strong homology to serine hydroxymethyl transferase; the best score is 53·1% identity in 458 amino acids overlap with the serine hydroxymethyl transferase from rabbit liver. YBR1724, which shows homology with riboflavin synthase of Bacillus subtilis, is probably the RIB5 gene implied in riboflavine synthesis and mapped in this region. YBR1733 is homologous to rab protein and YBR1728 is presumably a GTPase activating protein.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; protein kinase ; mRNA leader ; RAS ; cell cycle ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The SCH9 yeast gene, that was previously identified as a suppressor of cdc25 and ras1- ras2-ts temperature-sensitive mutants, encodes a putative protein kinase that positively regulates the progression of yeast cells through the G1 phase of the cell cycle. We have determined the structure of the SCH9 transcription unit, using primer extension and S1 mapping techniques. The corresponding mRNA included an unusually long 5′ region of more than 600 nucleotides preceding the major open reading frame (ORF). While the latter corresponded to a protein of 824 amino acids, an upstream open reading frame (uORF) within the 5′ leader could potentially encode a 54 amino acid peptide. To investigate the role of the AUGs within the uORF, we engineered chimaeric plasmid vectors in which SCH9 sequences including the promoter, the mRNA leader and the first 514 nucleotides of the major ORF were fused in-frame with β-galactosidase-coding sequences. Upon introduction into yeast cells, the fusion protein was efficiently expressed. However, mutational disruption of the uORF using oligonucleotide-directed mutagenesis did not affect the level of expression of the fusion protein. This indicates that regulatory mechanisms in Saccharomyces cerevisiae prevent upstream AUGs within the SCH9 mRNA leader sequence from influencing translation from downstream initiation codons.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 465-479 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; growth control ; cell cycle ; cyclic AMP ; carbon metabolism ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Nutrients regulate the proliferation of many eukaryotic cells: in the absence of sufficient nutrients vegetatively growing cells will enter stationary (G0 like) phase; in the presence of sufficient nutrients non-proliferative cells will begin growth. Previously we have shown that glucose is the critical nutrient which stimulates a variety of growth-related events in the yeast Saccharomyces cerevisiae (Granot and Snyder, 1991). This paper describes six new aspects of the induction of cell growth events by nutrients in S. cerevisiae. First, all carbon sources tested, both fermentable and non-fermentable, induce growth-related events in stationary phase cells, suggesting that the carbon source is the critical nutrient which stimulates growth. Second, the continuous presence of glucose is not necessary for the induction of growth events, but rather a short ‘pulse’ of glucose followed by an incubation period in water will induce growth events. Third, growth stimulation by glucose occurs in the absence of the SNF3 high affinity glucose transporter. Fourth, growth stimulation occurs independent of carbon source phosphorylation and carbon source metabolism. Fifth, growth induction by carbon source does not require protein synthesis or extracellular calcium. Sixth, following stimulation by carbon source, the cells remain induced for more than 2 h after removal of the carbon source. We suggest a general model in which different carbon sources act as signals to induce the earliest growth events during or following its entry into the cell and that these growth events do not depend upon metabolism of the carbon source.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 0749-503X
    Keywords: Heat shock proteins ; mRNA degradation ; ribosomal proteins ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have previously shown that the heat-induced enhanced decay of yeast mRNAs encoding ribosomal proteins (rp-mRNAs) requires ongoing transcription during the heat treatment [Herruer et al. (1988) Nucl. Acids Res. 16, 7917]. In order to determine whether this requirement reflects the need for heat-shock protein (hsp), we analysed the effect of heat shock on rp-mRNA levels in several yeast strains in which each of the heat-shock genes encoding hsp26, hsp35 or hsp83 had been individually disrupted. In all three strains we still observed increased degradation of rp-mRNAs immediately after the temperature shift, demonstrating that hsp26, hsp35 and hsp83 are not required for this effect. Accelerated turnover of rp-mRNA was also found to occur upon raising the growth temperature of a mutant strain that contains a disruption of the gene specifying the heat-shock transcription factor and in wild-type yeast cells treated with canavanine, an arginine analogue that will be incorporated into all known hsps and that is known to cause misfolding of the polypeptide chain. Latter observation suggests that enhanced rp-mRNA decay is a more general stress-related phenomenon. Taken together, these data strongly indicate that the trans-acting factor required for the increase in the rate of degradation of rp-mRNAs upon stress is not one of the known yeast hsps.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; cystathionine γ-lyase ; OAS/OAH sulfhydrylase ; purification ; amino acid sequence ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Purification of Saccharomyces cerevisiae cystathionine γ-lyase (γ-CTLase) was hampered by the presence of a protein migrating very close to it in various types of column chromatography. The enzyme and the contaminant were nevertheless separated by polyacrylamide gel electrophoresis. N-terminal amino acid sequence analysis indicated that they are coded for by CYS3(CYI1) and MET17(MET25), respectively, leading to the conclusion that CYS3 is the structural gene for γ-CTLase and that the contaminant is O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase). Based on these findings, we purified γ-CTLase by the following strategy: (1) extraction of OAS/OAH SHLase from a CYS3-disrupted strain; (2) preparation of antiserum against it; (3) identification of a strain devoid of the OAS/OAH SHLase protein using this antiserum; and (4) extraction of γ-CTLase from this strain. Purified γ-CTLase had cystathionine γ-synthase (γ-CTSase) activity if O-succinylhomoserine, but not O-acetylhomoserine, was used as substrate. From this notion we discuss the evolutional relationship between S. cerevisiae γ-CTLase and Escherichia coli γ-CTSase.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 0749-503X
    Keywords: FLO1 ; flocculation ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The cloned part of the flocculation gene FLO1 of Saccharomyces cerevisiae (Teunissen, A.W.R.H., van den Berg, J.A. and Steensma, H.Y. (1993). Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae, Yeast, in press) has been sequenced. The sequence contains a large open reading frame of 2685 bp. The amino acid sequence of the putative protein reveals a serine- and threonine-rich C-terminus (46%), the presence of repeated sequences and a possible secretion signal at the N-terminus. Although the sequence is not complete (we assume the missing fragment consists of repeat units), these data strongly suggest that the protein is located in the cell wall, and thus may be directly involved in the flocculation process.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 589-598 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; Kluyveromyces lactis ; killer toxin ; fungal chitin ; cell wall mutants ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Kluyveromyces lactis killer toxin causes sensitive strains of a variety of yeasts to arrest at the G1 stage of the cell cycle, and to lose viability. We describe here the isolation and characterization of a class of recessive mutations in Saccharomyces cerevisiae that leads to toxin resistance and a temperature-sensitive phenotype. These mutant cells arrest growth at 37°C with a characteristic phenotype of elongated buds. Cloning of the gene complementing these defects revealed it to be CAL1, coding for chitin synthase 3 activity. Calcofluor staining of the mutant cells indicated that chitin is absent both at 23°C and 37°C. Given that the CAL1 activity is responsible for the synthesis of most of chitin in yeast cells, and that in its absence the cells are viable but resistant to the killer toxin, our results strongly suggest that chitin might represent the receptor for this killer toxin.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 0749-503X
    Keywords: Bromocresol purple ; killer toxin ; Saccharomyces cerevisiae ; fluorescence staining ; yeast ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A method is described for detecting yeast cells with plasma membrane damage, based on cell staining with bromocresol purple (BCP) which has a convenient fluorescence after entering the cells at pH below 5·2. The method was used to determine the activity of Saccharomyces cerevisiae pore-forming killer toxin K1 in commonly used lethal units. The BCP test is rapid and as precise as the plating test.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 1-10 
    ISSN: 0749-503X
    Keywords: Chromosome I ; Flocculation ; FLO1 ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The genetics of flocculation in the yeast Saccharomyces cerevisiae are poorly understood despite the importance of this property for strains used in industry. To be able to study the regulation of flocculation in yeast, one of the genes involved, FLO1, has been partially cloned. The identity of the gene was confirmed by the non-flocculent phenotype of cells in which the C-terminal part of the gene had been replaced by the URA3 gene. Southern blots and genetic crosses showed that the URA3 gene had integrated at the expected position on chromosome I. A region of approximately 2 kb in the middle of the FLO1 gene was consistently deleted during propagation in Escherichia coli and could not be isolated. Plasmids containing the incomplete gene, however, were still able to cause weak flocculation in a nonflocculent strain. The 3′ end of the FLO1 gene was localized at approximately 24 kb from the right end of chromosome I, 20 kb centromere-proximal to PHO11. Most of the newly isolated chromosome I sequences also hybridized to chromosome VIII DNA, thus extending the homology between the right end of chromosome I and chromosome VIII to approximately 28 kb.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 235-249 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; nuclear pore ; nuclear envelope ; mitosis ; karyogamy ; cell cycle ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In the yeast Saccharomyces cerevisiae, the nucleus undergoes dramatic shape changes during mitosis and mating. We have studied nuclear envelope dynamics during the processes of mitosis and conjugation using nuclear pore complexes as a marker for the nuclear envelope in wild-type cells and several cell-division-cycle (cdc) mutants.Three monoclonal antibodies are described that recognize nuclear pore complex-related antigens in S. cerevisiae. One of these antibodies, RL1, has been extensively characterized by Gerace and colleagues and recognizes nuclear pore complexes in mammalian and amphibian cells. By indirect immunofluorescence of yeast cells, all three antibodies yield a discontinuous nuclear rim stain. All three react with multiple nuclear-enriched proteins in immunoblots, including the nucleoporin protein encoded by the NSP1 gene.When the antibodies were used in immunofluorescence experiments on mating cells, the nuclear pore complex staining pattern proved to be a sensitive indicator of nuclear fusion. Nuclei with closely apposed spindle pole bodies and unfused nuclear envelopes could be readily distinguished. Marked shape changes were observed in nuclei during fusion and segregation of the diploid nucleus into the zygotic bud.In cdc14 and cdc15 mutants that arrest late in mitosis, the elongated nuclear envelope extension that stretches between daughter nuclei during telophase was preserved. In cytokinesis-defective mutants (cdc3, cdc10, cdc11 and cdc12), the elongated nuclear envelope was usually resolved into two daughter nuclei in the absence of cytokinesis. These results indicate that nuclear envelope division is mechanistically distinguishable from chromosome segregation, nucleolar segregation and cytokinesis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 0749-503X
    Keywords: Quinol-cytochrome c reductase ; Saccharomyces cerevisiae ; petite ; yeast chromosome VII ; bc1 complex ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We present here mapping data for QCR9, a nuclear gene encoding a subunit of the ubiquinol-cytochrome c oxidoreductase complex. Deletion of QCR9 results in the inability of cells to grow on non-fermentable carbon sources at 37°C. Thus, qcr9 mutants can be scored by growing cells on YPE/G at 37°C, or followed by the URA3 marker, which was inserted when making the qcr9 deletion strain, JDP1. The location of QCR9 on the right arm of chromosome VII with respect to the previously mapped genes ADE3, SER2 and PET54 is given.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 111-119 
    ISSN: 0749-503X
    Keywords: Yeast ; hexose transport ; galactose inhibition ; glycolysis ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The relationship between the pathways of glucose and galactose utilization in Saccharomyces cerevisiae has been studied. Galactose (which is transported and phosphorylated by inducible systems) is a strong inhibitor of the utilization of glucose, fructose and mannose (which have the same constitutive transport and phosphorylation systems). Conversely, all these three hexoses inhibit the utilization of galactose, though with poor efficiency. These cross-inhibitions only occur in yeast adapted to galactose or in galactose-constitutive mutants.The efficiency of galactose as inhibitor is even greater than the efficiencies of each of the other three hexoses to inhibit the utilization of each other. Phosphorylation is not involved in the inhibition and the transport of sugars is the affected step.The cross-inhibitions between galactose and either glucose, fructose or mannose do not implicate utilization of one hexose at the expense of the other, as it occurs in the mutual interactions between the latter three sugars. It seems that, by growing the yeast in galactose, a protein component is synthesized, or alternatively modified, that once bound to either galactose or any one of the other three hexoses (glucose, fructose or mannose), cross-interacts respectively with the constitutive or the inducible transport systems, impairing their function.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome I ; calnexin homologue ; CNE1 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 0749-503X
    Keywords: MCM1 ; ARG80 ; ARG81 ; arginase ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Induced production of arginase (CAR1) enzyme activity and steady-state CAR1 mRNA in Saccharomyces cerevisiae requires wild-type ARG80/ARGRI and ARG81/ARGRII gene products. We demonstrate here that these gene products, along with that of the MCM1 gene, are required for the inducer-dependent UASI-A, UASI-B and UASI-C elements to function but they are not required for operation of inducer-independent CAR1 UASC1 or UASC2M. Through the use of single and multiple point mutations, the CAR1 UASI-B and UASI-C elements were demonstrated to be at least 23 bp in length. Moreover, simultaneous mutation of both ends of an elements gave stronger phenotypes than mutations at either end. The center of the element was more sensitive to mutation than were the ends.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; genetic mapping ; RIB1 ; RIB7 ; RPB5 ; biosynthesis of riboflavin ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; yeast ; chromosome XI ; MBR1 ; protein kinases ; serine-rich protein ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We report in this paper the sequence of a part of chromosome XI of Saccharomyces cerevisiae. This 17 kbp nucleotide sequence represents the right half of cosmid pUKG151 and contains nine open reading frames, YKL453, 450, 449, 448, 445, 443, 442, 441 and the 5′ part of YKL440. YKL440 was previously identified as the MBR1 gene and plays a role in mitochondrial biogenesis. YKL443 is a homologue of the yeast serine-rich protein (SRP1), while YKL453 presents strong homologies with the KIN1/KIN2/SNF1 kinase family. It must be pointed out that the size of this gene is well above average for yeast.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 715-722 
    ISSN: 0749-503X
    Keywords: Gene fusion ; protein purification ; glutathione S-transferase ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A rapid and convenient method of protein purification involves creating a fusion protein with glutathione S-transferase (GST) (Smith and Johnson, Gene 67, 31-40, 1988). In this report, we describe two vectors for the conditional expression of GST fusions in Saccharomyces cerevisiae. The parent plasmid is based on a high-copy, galactose-inducible shuttle vector previously described (Baldari et al., EMBO J. 6, 229-243, 1987). We have demonstrated the use of this system by creating fusions between GST and the yeast RAS2 gene. GST-Ras2 fusion proteins undergo the post-translational modifications required for Ras2p to become membrane localized. These vectors provide a useful system for the expression an dpurification of eukaryotic proteins requiring post-translational modification.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...