ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Maps
  • Rhizosphere  (5)
  • 1990-1994  (5)
  • 1955-1959
  • 1992  (5)
  • Geosciences  (5)
  • 1
    ISSN: 1432-0789
    Keywords: Bacteria ; Ectomycorrhiza ; Laccaria laccata ; Quercus robur ; Rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Pedunculate oak seedlings (Quercus robur) inoculated with the ectomycorrhizal fungus Laccaria lacata were grown for 1 year on fertilized sphagnum peat in two nurseries. Three factors affecting microbial populations in the substrate were studied, fungicide treatment of the seeds, peat disinfection before sowing (methyl bromide or steam pasteurization), and inoculation with mycorrhization helper bacteria. Treatment of acorns with Iprodione had no depressive effect on mycorrhiza formation. Both disinfection techniques were equivalent, stimulating or depressing mycorrhiza formation depending on the initial microflora in the peat. The introduction of two previously selected mycorrhization helper bacteria (one Pseudomonas fluorescens and one unidentified fluorescent pseudomonad), isolated from L. laccata sporocarps associated with Douglas fir—L. laccata ectomycorrhizas in other nurseries, significantly increased the mycorrhizal rate from 30 to 53% of the short roots. The implications of these results for the controlled mycorrhization of planting stocks and the specificity of mycorrhization helper bacteria are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Pseudomonas fluorescens ; Alginate beads ; Soil ; Rhizosphere ; Rhizoplane ; Survival ; Root colonization ; Inoculation technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The survival of Pseudomonas fluorescens cells encapsulated in alginate beads and colonization of wheat roots was studied in soil microcosms inoculated with the cells in alginate beads of varying composition. Cells encapsulated in beads and introduced into a non-sterile loamy sand survived better than cells added directly to the same soil. A recovery/growth step for the bead-encapsulated cells was added before they were introduced into the soil, in an attempt to obtain optimal population levels in the soil. Further, bacterial populations that grew to the highest density in the beads subsequently showed the highest survival levels in soil. The addition of 3% skim milk, or 3% skim milk and 3% bentonite clay to all bead types consistently resulted in the highest survival of the encapsulated cells in soil. Root colonization by P. fluorescens was generally not impaired by the encapsulation in alginate. One week after inoculation into the soil, encapsulated cells in the various bead types were able to colonize the wheat rhizoplane at high population levels, similar to or exceeding those found when free cells were inoculated. In a second root colonization experiment the wheat rhizoplane was also efficiently colonized 7 weeks after the inoculant cells had been introduced into the soil in different bead types. In both assays, the cells encapsulated in beads amended with skim milk plus bentonite clay showed the highest root colonization rates. It is clear, therefore, that alginate-mediated establishment of inoculants can improve inoculant effectiveness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 14 (1992), S. 121-125 
    ISSN: 1432-0789
    Keywords: Rhizosphere ; Calcium phosphate solubilization ; Nitrogen source ; Acidification ; Phosphatase activity ; Phenolphthalein phosphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The techniques described here were developed to visualize the dissolution of sparingly soluble calcium phosphate and the presence of root-borne phosphatase in the rhizosphere. Newly formed calcium phosphate precipitate was suspended in agar containing other essential nutrients. The agar was poured into Petri dishes and acrylglass boxes and was used as a growth medium for seedlings of wheat, rape, buckwheat, and rice. With NH 4 + applied as the N source, the precipitate dissolved in the root vicinity and this was attributed to acidification. No dissolution occurred with NO 3 − as the N source. The release of a neutral phosphatase from roots was verified by embedding the roots of young seedlings in agar at pH 7 containing phenolphthalein phosphate. After pH was raised to the alkaline range by adding sodium hydroxide, the agar around the roots turned purple, especially around the roots of P-deprived plants. The most intensive phosphatase activity was found in apical root regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Rhizobia ; Rhizosphere ; Acid soils ; Pastures ; Hill-lands ; Vesicular arbuscular mycorrhizal ; Pseudomonas putida ; Plant growth-promoting rhizobacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In a growth chamber study we examined the influence of a plant growth-promoting rhizobacterium, Pseudomonas putida R-20, and an acid-tolerant vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus intraradices 25, on Medicago sativa L. and Lotus corniculatus L. growth and nodule development. Seedlings were planted in an acidic (pH 5.5), P-deficient soil containing re-established native microflora (minus VAM) and appropriate rhizobia, and inoculated with the rhizobacterium, the VAM fungus, or both. The plants were assayed at three intervals for up to 10–11 weeks. The growth-promoting rhizobacteria alone increased alfalfa shoot mass by 23% compared to all other treatments, but only at 8 weeks of growth, apparently by promoting nodulation and N2 fixation (acetylene reduction activity). The presence of VAM, either alone or in combination with the rhizobacteria, generally decreased root length but only at 8 weeks also. As a group, the inoculation treatments increased all nodular measurements by 10 weeks of growth. Few treatment effects were found at 7 and 9 weeks for birdsfoot trefoil; neither plant nor nodular measurements differed among treatments. By 11 weeks, shoot mass was increased by the rhizobacteria alone by 36% compared to the control. As a group, the inoculation treatments all showed increased nodular responses by this time. The rhizobacteria stimulated mycorrhizal development on both plant species, but only at the initial samplings. No synergistic effects between the plant growth-promoting rhizobacterium and VAM inoculation were found. Although these results lend credence to the concept of managing microorganisms in the rhizosphere to improve plant growth, they emphasize the necessity for a more thorough understanding of microbial interactions as plants mature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 14 (1992), S. 246-252 
    ISSN: 1432-0789
    Keywords: Volcanic ash soil ; Fluorescent pseudomonads ; Rhizosphere ; Wheat ; Bacterial groups ; Phosphate fertilizer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Populations of several bacterial groups on the root surface of wheat and in root-free soil were investigated in volcanic ash soil and non-volcanic ash soil throughout a series of predetermined intervals. Over time, the populations changed similarly both on the root surface and in root-free soil. The numbers of total bacteria, fluorescent Pseudomonas spp., phosphate-solubilizing bacteria, and NH inf+ sup4 -oxidizing bacteria, were consistently lower in the plots with volcanic ash soil than with nonvolcanic ash soil, but the numbers of cellulose-decomposing bacteria were opposite to those of the other groups. Superphosphate application improved the growth of wheat in the volvanic ash soil. It did not, however, bring about any significant changes in the bacterial populations among the volcanic ash soils supplemented with three different levels of superphosphate, though there were some variations with plant age.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...