ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (23,960)
  • Other Sources  (57)
  • Wiley-Blackwell  (12,103)
  • Nature Publishing Group  (7,741)
  • Cambridge University Press
  • Inst. f. Geophys., Ruhr-Univ. Bochum
  • Molecular Diversity Preservation International
  • Taylor & Francis
  • 2020-2023  (13)
  • 2005-2009  (6,052)
  • 1990-1994  (17,952)
  • 1970-1974
  • 2022  (13)
  • 2005  (6,052)
  • 1991  (17,952)
Collection
  • Books  (15)
  • Articles  (23,960)
  • Other Sources  (57)
Publisher
Years
  • 2020-2023  (13)
  • 2005-2009  (6,052)
  • 1990-1994  (17,952)
  • 1970-1974
  • 2020-2024  (11)
Year
Journal
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2000. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 403 (2000): 37-65, doi:10.1017/S0022112099006916.
    Description: The dynamics of expanding domes of isothermal lava are studied by treating the lava as a viscoplastic material with the Herschel–Bulkley constitutive law. Thin-layer theory is developed for radially symmetric extrusions onto horizontal plates. This provides an evolution equation for the thickness of the fluid that can be used to model expanding isothermal lava domes. Numerical and analytical solutions are derived that explore the effects of yield stress, shear thinning and basal sliding on the dome evolution. The results are briefly compared with an experimental study. It is found that it is difficult to unravel the combined effects of shear thinning and yield stress; this may prove important to studies that attempt to infer yield stress from morphology of flowing lava.
    Description: The financial support of an EPSRC Advanced Fellowship is gratefully acknowledged by R.V. C. N. J. B. was partially supported by the NSF Grant OCE-9616017 and an EPSRC Visiting Fellowship Grant GR/M50409.
    Keywords: Isothermal lava domes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1102860 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2004. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Parasitology 128 (2004): 577-584, doi:10.1017/S0031182004005025.
    Description: Human serum high-density lipoprotein (HDL) is necessary and sufficient for the short-term maintenance of Plasmodium falciparum in in vitro culture. However, at high concentrations it is toxic to the parasite. A heat-labile component is apparently responsible for the stage-specific toxicity to parasites within infected erythrocytes 12–42 h after invasion, i.e. during trophozoite maturation. The effects of HDL on parasite metabolism (as determined by nucleic acid synthesis) are evident at about 30 h after invasion. Parasites treated with HDL show gross abnormalities by light and electron microscopy.
    Description: Professor Hajduk was supported by NIH. Professor Day was supported by a Research Leave Fellowship from The Wellcome Trust. Dr Imrie and Ms Carter were supported by Programme Grant funding awarded to Professor Day from The Wellcome Trust. Dr Ferguson was supported by an equipment grant from The Wellcome Trust.
    Keywords: Plasmodium falciparum ; High density lipoprotein
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 179037 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2004. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Geological Magazine 141 (2004): 195-207, doi:10.1017/S001675680400891X.
    Description: Because magmatism associated with subduction is thought to be the principal source for continental crust generation, assessing the relative contribution of pre-existing (subducted and assimilated) continental material to arc magmatism in accreted arcs is important to understanding the origin of continental crust. We present a detailed Nd isotopic stratigraphy for volcanic and volcaniclastic formations from the South Mayo Trough, an accreted oceanic arc exposed in the western Irish Caledonides. These units span an arc–continent collision event, the Grampian (Taconic) Orogeny, in which an intra-oceanic island arc was accreted onto the passive continental margin of Laurentia starting at [similar] 475 Ma (Arenig). The stratigraphy corresponding to pre-, syn- and post-collisional volcanism reveals a progression of [varepsilon]Nd(t) from strongly positive values, consistent with melt derivation almost exclusively from oceanic mantle beneath the arc, to strongly negative values, indicating incorporation of continental material into the melt. Using [varepsilon]Nd(t) values of meta-sediments that represent the Laurentian passive margin and accretionary prism, we are able to quantify the relative proportions of continent-derived melt at various stages of arc formation and accretion. Mass balance calculations show that mantle-derived magmatism contributes substantially to melt production during all stages of arc–continent collision, never accounting for less than 21% of the total. This implies that a significant addition of new, rather than recycled, continental crust can accompany arc–continent collision and continental arc magmatism.
    Keywords: Grampian Orogeny ; Western Ireland ; Continental crust ; Nd isotopes ; Laurentia ; Iapetus Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 509750 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2004. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 516 (2004): 83-113, doi:10.1017/S0022112004000473.
    Description: Oceanic observations indicate that abyssal mixing tends to be localized to regions of rough topography. How localized mixing interacts with the ambient fluid in a stratified, rotating system is an open question. To gain insight into this complicated process laboratory experiments are used to explore the interaction of mechanically induced boundary mixing and an interior body of linearly stratified rotating fluid. Turbulence is generated by a single vertically oscillating horizontal bar of finite horizontal extent, located at mid-depth along the tank wall. The turbulence forms a region of mixed fluid which quickly reaches a steady-state height and collapses into the interior. The mixed-layer thickness, $h_m\,{\sim}\,\gamma ({\omega}/{N})^{1/2}$, is spatially uniform and independent of the Coriolis frequency $f$. $N$ is the initial buoyancy frequency, $\omega$ is the bar oscillation frequency, and $\gamma\,{\approx}\,1$ cm is an empirical constant determined by the bar geometry. Surprisingly, the export of mixed fluid does not occur as a boundary current along the tank perimeter. Rather, mixed fluid intrudes directly into the interior as a radial front of uniform height, advancing with a speed comparable to a gravity current. The volume of mixed fluid grows linearly with time, $V\,{\propto}\,({N}/{f})^{3/2}h_m^3 \textit{ft}$, and is independent of the lateral extent of the mixing bar. Entrainment into the turbulent zone occurs principally through horizontal flows at the level of the mixing that appear to eliminate export by a geostrophic boundary flow. The circulation patterns suggest a model of unmixed fluid laterally entrained at velocity $u_e \,{\sim}\,Nh_m $ into the open sides of a turbulent zone with height $h_{m}$ and a length, perpendicular to the boundary, proportional to $L_f \,{\equiv}\,\gamma ({\omega}/{f})^{1/2}$. Here $L_{f}$ is an equilibrium length scale associated with rotational control of bar-generated turbulence. The model flux of exported mixed fluid $Q\,{\sim}\,h_m L_f u_e$ is constant and in agreement with the experiments.
    Description: This work was supported by the Ocean Ventures Fund, the Westcott Fund and the WHOI Academic Programs Office. Financial support was also provided by the National Science Foundation through grant OCE-9616949.
    Keywords: Abyssal mixing ; Stratified rotating system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 519410 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2004. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 506 (2004): 217-244, doi:10.1017/S0022112004008572.
    Description: The effect of both vertical and horizontal components of the Earth's rotation on plumes during deep convection in the ocean is studied. In the laboratory, the misalignment, characterized by the angle $\alpha$, between the buoyancy force (‘effective’ free-fall acceleration ${\bm g}_e$) and the rotation axis ${\bm \Omega}$ is produced by using the centrifugal force: an experimental tank was placed at a large distance from the centre of the turntable. The mathematical analogy between the laboratory model and the oceanic environment is presented. For $\alpha\,{=}\,30^\circ$, a number of laboratory experiments spanning a wide range of the buoyancy flux parameter, and correspondingly Reynolds number, is used to illustrate the development of the convective plume from a point source in regimes ranging from weakly to highly turbulent. New features of the flow, as compared to $\alpha\,{=}\,0$, are documented and explained. The incoming heavier dyed fluid jet disintegrates into fast-sinking coherent blobs (in a low-Reynolds-number regime) or turbulent billows (in a high-Reynolds-number regime) and a more diffuse cloud of highly diluted dyed water. An analysis of the forces acting on an ellipsoid moving in a rotating fluid with the main balance including the buoyancy, Coriolis forces, and the hydrodynamic reaction due to generation of inertial waves correctly predicts the trajectory of a descending blob. It also explains the tendency of the plume to develop in the direction intermediate between ${\bm g}_e$ and ${\bm \Omega}$ and to shift ‘eastward’ (lagging the rotation of the centrifuge) if the plume is envisaged as an ensemble of blobs. The stretching of the highly diluted dyed water along the absolute vorticity tubes with simultaneous shearing by horizontal quasi-two-dimensional flow produces conspicuous tilted structures or tilted Taylor ‘ink walls’. The misalignment between ${\bm g}_e$ and ${\bm \Omega}$ enhances the turbulent mixing and development of tilted structures by breaking the symmetry and producing motions directed away from the rotation axis. We argue that the conditions at the sites of ocean deep convection are favourable for the development of tilted structures because of the smallness of the Rossby number and an extreme homogenization of the mixed layer. We hypothesize that the homogenized sublayers observed within actively convecting regions in the ocean may not be horizontal, but in fact analogous to the tilted ‘ink walls’ observed in the laboratory experiments and that they represent the internal structure of a plume on horizontal scales smaller than its depth.
    Description: This work was supported by a grant from The Andrew W. Mellon Foundation Endowed Fund for Innovative Research and by the National Science Foundation grant OCE-0116910.
    Keywords: Convective plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 449374 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2000. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 404 (2000):117-149, doi:10.1017/S0022112099007065.
    Description: In order to gain insight into the hydraulics of rotating-channel flow, a set of initial-value problems analogous to Long's towing experiments is considered. Specifically, we calculate the adjustment caused by the introduction of a stationary obstacle into a steady, single-layer flow in a rotating channel of infinite length. Using the semigeostrophic approximation and the assumption of uniform potential vorticity, we predict the critical obstacle height above which upstream influence occurs. This height is a function of the initial Froude number, the ratio of the channel width to an appropriately defined Rossby radius of deformation, and a third parameter governing how the initial volume flux in sidewall boundary layers is partitioned. (In all cases, the latter is held to a fixed value specifying zero flow in the right-hand (facing downstream) boundary layer.) The temporal development of the flow according to the full, two-dimensional shallow water equations is calculated numerically, revealing numerous interesting features such as upstream-propagating shocks and separated rarefying intrusions, downstream hydraulic jumps in both depth and stream width, flow separation, and two types of recirculations. The semigeostrophic prediction of the critical obstacle height proves accurate for relatively narrow channels and moderately accurate for wide channels. Significantly, we find that contact with the left-hand wall (facing downstream) is crucial to most of the interesting and important features. For example, no instances are found of hydraulic control of flow that is separated from the left-hand wall at the sill, despite the fact that such states have been predicted by previous semigeostrophic theories. The calculations result in a series of regime diagrams that should be very helpful for investigators who wish to gain insight into rotating, hydraulically driven flow.
    Description: The authors have been supported by the National Science Foundation through Grants (OCE-9810599 for L.J.P. and K.R.H. and OCE-9711186 for EPC). L.J.P. also received support from the Office of Naval Research under Grant N00014-95-1-0456 and K.R.H. under grant N00014-93-1-0263.
    Keywords: Rotating-channel flow ; Hydraulically driven flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 3069192 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2004. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 514 (2004): 107-119, doi:10.1017/S0022112004000126.
    Description: While acoustic scatter from oceanic turbulence is sensitive to temperature–salinity covariations, there are unfortunately no published measurements of the turbulent temperature–salinity co-spectrum. Several models have been proposed for the form of the co-spectrum of two scalars in turbulence, but they all produce unsatisfactory results when applied to the turbulent scattering equations (either predicting negative scattering cross-sections in some regimes or predicting implausible levels of correlation between temperature and salinity at some scales). A new model is proposed and shown to give physically plausible scattering predictions in all density regimes. High-frequency acoustic data illustrate the importance of the co-spectrum for acoustic scattering, but were collected in a density regime where there is little difference between the co-spectrum models.
    Description: This work was supported by NSERC and by ONR under grant #N00014-93-1-0362.
    Keywords: Oceanic turbulence ; Co-spectrum ; Temperature–salinity covariations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 474199 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2002. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 452 (2002): 97-121, doi:10.1017/S0022112001006668.
    Description: Buoyancy-driven surface currents were generated in the laboratory by releasing buoyant fluid from a source adjacent to a vertical boundary in a rotating container. Different bottom topographies that simulate both a continental slope and a continental ridge were introduced in the container. The topography modified the flow in comparison with the at bottom case where the current grew in width and depth until it became unstable once to non-axisymmetric disturbances. However, when topography was introduced a second instability of the buoyancy-driven current was observed. The most important parameter describing the flow is the ratio of continental shelf width W to the width L* of the current at the onset of the instability. The values of L* for the first instability, and L*[minus sign]W for the second instability were not influenced by the topography and were 2–6 times the Rossby radius. Thus, the parameter describing the flow can be expressed as the ratio of the width of the continental shelf to the Rossby radius. When this ratio is larger than 2–6 the second instability was observed on the current front. A continental ridge allowed the disturbance to grow to larger amplitude with formation of eddies and fronts, while a gentle continental slope reduced the growth rate and amplitude of the most unstable mode, when compared to the continental ridge topography. When present, eddies did not separate from the main current, and remained near the shelf break. On the other hand, for the largest values of the Rossby radius the first instability was suppressed and the flow was observed to remain stable. A small but significant variation was found in the wavelength of the first instability, which was smaller for a current over topography than over a flat bottom.
    Description: Partial support for C.C. was provided by a TMR fellowship, MAS3-CT96-5017.
    Keywords: Buoyancy-driven currents ; Bottom topography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 750211 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2002. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 468 (2002): 179-204, doi:10.1017/S0022112002001520.
    Description: A similarity solution to the long-wave shallow-water equations is obtained for a density current (reduced gravity = g[prime prime or minute], Coriolis parameter = f) propagating alongshore (y = 0). The potential vorticity q = f/H1 is uniform in [minus sign][infty infinity] 〈 x [less-than-or-eq, slant] xnose(t), 0 〈 y [less-than-or-eq, slant] L(x, t), and the nose of this advancing potential vorticity front displaces fluid of greater q = f/H0, which is located at L 〈 y 〈 [infty infinity]. If L0 = L([minus sign][infty infinity], t), the nose point with L(xnose(t), t) = 0 moves with velocity Unose = [surd radical]g[prime prime or minute]H0 [phi], where [phi] is a function of H1/H0, f2L20/g[prime prime or minute]H0. The assumptions made in the similarity theory are verified by an initial value solution of the complete reduced-gravity shallow-water equations. The latter also reveal the new effect of a Kelvin shock wave colliding with a potential vorticity front, as is confirmed by a laboratory experiment. Also confirmed is the expansion wave structure of the intrusion, but the observed values of Unose are only in qualitative agreement; the difference is attributed to the presence of small-scale (non-hydrostatic) turbulence in the laboratory experiment but not in the numerical solutions.
    Description: This work is funded by National Science Foundation grants OCE-9726584 & OCE-0092504 (M. E. S.) and OCE-9810599 (K. R. H.).
    Keywords: Potential vorticity front ; Frontal intrusion ; Kelvin wave
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 615286 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 481 (2003): 329-353, doi:10.1017/S0022112003004051.
    Description: In this article we investigate time-periodic shear flows in the context of the two-dimensional vorticity equation, which may be applied to describe certain large-scale atmospheric and oceanic flows. The linear stability analyses of both discrete and continuous profiles demonstrate that parametric instability can arise even in this simple model: the oscillations can stabilize (destabilize) an otherwise unstable (stable) shear flow, as in Mathieu's equation (Stoker 1950). Nonlinear simulations of the continuous oscillatory basic state support the predictions from linear theory and, in addition, illustrate the evolution of the instability process and thereby show the structure of the vortices that emerge. The discovery of parametric instability in this model suggests that this mechanism can occur in geophysical shear flows and provides an additional means through which turbulent mixing can be generated in large-scale flows.
    Description: F.P.’s and G.F.’s research was supported by grants from NSF, OPP- 9910052 and OCE-0137023. J.P.’s research is supported in part by a grant from NSF, OCE-9901654.
    Keywords: Time-periodic shear flows ; Parametric instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 349820 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...