ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (296,063)
  • 1990-1994  (307,086)
  • 1940-1944  (3)
  • 2002  (296,059)
  • 1991  (307,079)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cortese, Giuseppe; Abelmann, Andrea (2002): Radiolarian-based paleotemperatures during the last 160 kyrs at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3-4), 259-286, https://doi.org/10.1016/S0031-0182(01)00499-0
    Publication Date: 2024-06-26
    Description: Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.
    Keywords: 177-1089; Agulhas Basin; Agulhas Ridge; ANT-IV/3; ANT-IV/4; ANT-IX/2; ANT-IX/4; ANT-VIII/3; ANT-VIII/6; ANT-X/5; ANT-XI/2; ANT-XI/4; Astrid Ridge; Atka Bay; Atlantic Ridge; AWI_Paleo; Brazil Basin; Cape Basin; COMPCORE; Composite Core; Filchner Shelf; Fram Strait; GeoB2004-1; GeoB2007-1; GeoB2008-1; GeoB2016-3; GeoB2018-1; GeoB2019-2; GeoB2021-4; GeoB2022-3; Giant box corer; GKG; Gravity corer (Kiel type); Indian-Antarctic Ridge; Joides Resolution; Lazarev Sea; Leg177; M23/1; Maud Rise; Meteor (1986); Meteor Rise; MIC; MiniCorer; MSN; MUC; MultiCorer; Multiple opening/closing net; Ocean Drilling Program; ODP; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; PLA; Plankton net; Polarstern; PS08; PS08/356; PS08/364; PS08/365; PS08/374; PS08/610; PS1380-1; PS1386-1; PS1387-1; PS1394-1; PS1455-4; PS16; PS16/267; PS16/271; PS16/281; PS16/294; PS16/306; PS16/311; PS16/316; PS16/321; PS16/323; PS16/329; PS16/334; PS16/337; PS16/342; PS16/345; PS16/351; PS16/354; PS16/362; PS16/366; PS16/372; PS16/507; PS16/518; PS16/534; PS16/540; PS16/547; PS16/557; PS1751-2; PS1752-5; PS1755-1; PS1759-1; PS1765-1; PS1768-1; PS1771-4; PS1772-2; PS1773-2; PS1774-1; PS1775-5; PS1776-6; PS1777-7; PS1778-1; PS1779-3; PS1780-1; PS1782-6; PS1783-2; PS1786-2; PS18; PS18/055; PS18/075; PS18/084; PS18/088; PS18/092; PS18/096; PS18/229; PS18/232; PS18/236; PS18/237; PS18/238; PS18/239; PS18/241; PS18/244; PS18/261; PS18/262; PS18/263; PS18/267; PS1805-5; PS18 06AQANTIX_2; PS1813-3; PS1821-5; PS1823-1; PS1825-5; PS1831-5; PS1957-1; PS1967-1; PS1973-1; PS1975-1; PS1977-1; PS1979-1; PS2073-1; PS2076-1; PS2080-1; PS2081-1; PS2082-3; PS2083-2; PS2084-2; PS2087-1; PS2103-2; PS2104-2; PS2105-2; PS2109-3; PS22/690; PS22 06AQANTX_5; PS2254-1; PS2256-4; PS2487-2; PS2488-1; PS2489-4; PS2491-4; PS2492-1; PS2493-3; PS2494-1; PS2495-1; PS2496-2; PS2498-2; PS2557-2; PS2560-3; PS2561-1; PS2562-1; PS2563-3; PS2564-2; PS28; PS28/236; PS28/243; PS28/256; PS28/264; PS28/277; PS28/280; PS28/289; PS28/293; PS28/298; PS28/304; PS30; PS30/004; PS30/023; PS30/030; PS30/038; PS30/043; PS30/048; Shona Ridge; SL; South African margin; South Atlantic; South Atlantic Ocean; South Sandwich Basin; South Sandwich Islands; South Sandwich Trough; Water sample; Weddell Sea; WS
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Melles, Martin (1991): Paläoglaziologie und Paläozeanographie im Spätquartär am Kontinentalrand des südlichen Weddellmeeres, Antarktis (Late Quaternary paleoglaciology and paleoceanography at the continental margin of the southern Weddell Sea, Antarctica). Berichte zur Polarforschung = Reports on Polar Research, 81, 190 pp, https://doi.org/10.2312/BzP_0081_1991
    Publication Date: 2024-06-26
    Description: During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a 〈50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated 〉 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.
    Keywords: ANT-I/2; ANT-II/4; ANT-III/3; ANT-IV/3; ANT-V/4; ANT-VI/3; Atka Bay; AWI_Paleo; Camp Norway; Cape Fiske; Dredge; DRG; Eastern Weddell Sea, Southern Ocean; Filchner Shelf; Filchner Trough; Giant box corer; GKG; Gould Bay; Gravity corer (Kiel type); Kapp Norvegia; Lyddan Island; MG; Multiboxcorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS01; PS01/154; PS01/155; PS01/156; PS01/161; PS01/162; PS01/177; PS01/184; PS01/186; PS01/189; PS04; PS04/477; PS04/481; PS04/484; PS04/495; PS04/500; PS04/508; PS04/509; PS06/301; PS06/302; PS06/303; PS06/304; PS06/306; PS06 SIBEX; PS08; PS08/321; PS08/324; PS08/327; PS08/333; PS08/335; PS08/336; PS08/338; PS08/340; PS08/344; PS08/345; PS08/346; PS08/347; PS08/350; PS08/353; PS08/354; PS08/355; PS08/356; PS08/357; PS08/358; PS08/359; PS08/360; PS08/361; PS08/364; PS08/365; PS08/366; PS08/367; PS08/368; PS08/369; PS08/374; PS08/375; PS08/379; PS08/380; PS08/381; PS08/382; PS08/384; PS08/385; PS08/386; PS08/387; PS08/394; PS08/396; PS08/397; PS08/401; PS08/402; PS08/410; PS08/428; PS08/430; PS08/432; PS08/438; PS08/439; PS08/440; PS08/442; PS08/444; PS08/445; PS08/449; PS08/450; PS08/452; PS08/480; PS08/482; PS08/483; PS10; PS10/725; PS10/738; PS10/740; PS10/748; PS10/757; PS10/760; PS10/762; PS10/766; PS10/768; PS10/778; PS10/782; PS1010-1; PS1011-1; PS1012-1; PS1013-1; PS1014-1; PS1016-1; PS1017-1; PS1018-1; PS1019-1; PS12; PS12/336; PS12/338; PS12/340; PS12/342; PS12/344; PS12/346; PS12/348; PS12/350; PS12/352; PS12/354; PS12/356; PS12/382; PS12/384; PS1215-2; PS1216-1; PS1217-1; PS1219-1; PS1220-3; PS1222-1; PS1223-1; PS1275-1; PS1276-1; PS1277-1; PS1278-1; PS1279-1; PS1363-3; PS1364-1; PS1366-1; PS1367-1; PS1368-1; PS1369-1; PS1370-1; PS1371-1; PS1372-2; PS1373-2; PS1374-2; PS1375-2; PS1376-2; PS1377-1; PS1378-1; PS1379-1; PS1380-1; PS1381-1; PS1382-1; PS1383-1; PS1384-1; PS1385-1; PS1386-1; PS1387-1; PS1388-1; PS1389-1; PS1390-1; PS1391-1; PS1394-1; PS1395-1; PS1396-1; PS1397-1; PS1398-2; PS1399-1; PS1400-1; PS1400-4; PS1401-1; PS1401-2; PS1402-2; PS1403-1; PS1405-1; PS1406-1; PS1407-1; PS1410-1; PS1411-1; PS1412-1; PS1414-1; PS1415-1; PS1416-1; PS1417-1; PS1418-1; PS1419-1; PS1420-1; PS1420-2; PS1421-1; PS1422-1; PS1423-1; PS1424-1; PS1425-1; PS1427-1; PS1428-1; PS1489-3; PS1490-2; PS1491-3; PS1492-1; PS1493-2; PS1494-2; PS1494-3; PS1495-1; PS1496-2; PS1497-1; PS1498-1; PS1498-2; PS1499-2; PS1605-3; PS1606-1; PS1606-3; PS1607-1; PS1607-3; PS1608-1; PS1609-1; PS1609-2; PS1609-3; PS1610-3; PS1610-4; PS1611-1; PS1611-2; PS1611-3; PS1612-1; PS1612-2; PS1613-2; PS1613-4; PS1614-1; PS1615-2; PS1626-1; PS1627-1; SL; Weddell Sea
    Type: Dataset
    Format: application/zip, 209 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Freudenthal, Tim; Meggers, Helge; Henderiks, Jorijntje; Kuhlmann, Holger; Moreno, Ana; Wefer, Gerold (2002): Upwelling intensity and filament activity off Morocco during the last 250,000 years. Deep Sea Research Part II: Topical Studies in Oceanography, 49(17), 3655-3674, https://doi.org/10.1016/S0967-0645(02)00101-7
    Publication Date: 2024-06-26
    Description: The high-productive upwelling area off Morocco is part of one of the four major trade-wind driven continental margin upwelling zones in the world oceans. While coastal upwelling occurs mostly on the shelf, biogenic particles derived from upwelling are deposited mostly at the upper continental slope. Nutrient-rich coastal water is transported within the Cape Ghir filament region at 30°N up to several hundreds of kilometers offshore. Both upwelling intensity and filament activity are dependent on the strength of the summer Trades. This study is aimed to reconstruct changes in trade wind intensity over the last 250,000 years by the analysis of the productivity signal contained in the sedimentary biogenic particles of the continental slope and beneath the Cape Ghir filament. Detailed geochemical and geophysical analyses (TOC, carbonate, C/N, delta13Corg, delta15N, delta13C of benthic foraminifera, delta18O of benthic and planktic foraminifera, magnetic susceptibility) have been carried out at two sites on the upper continental slope and one site located further offshore influenced by the Cape Ghir filament. A second offshore site south of the filament was analyzed (TOC, magnetic susceptibility) to distinguish the productivity signal related to the filament signal from the general offshore variability. Higher productivity during glacial times was observed at all four sites. However, the variability of productivity during glacial times was remarkably different at the filament-influenced site compared to the upwelling-influenced continental slope sites. In addition to climate-related changes in upwelling intensity, zonal shifts of the upwelling area due to sea-level changes have impacted the sedimentary productivity record, especially at the continental slope sites. By comparison with other proxies related to the strength and direction of the prevailing winds (Si/Al ratio as grain-size indicator, pollen) the productivity record at the filament-influenced site reflects mainly changes in trade-wind intensity. Our reconstruction reveals that especially during glacial times trade-wind intensity was increased and showed a strong variability with frequencies related to precession.
    Keywords: Agadir Canyon; Canary Islands Azores Gibraltar Observations; CANIGO; GeoB; GeoB4216-1; GeoB4216-2; GeoB4223-1; GeoB4223-2; GeoB4228-3; GeoB4240-2; Geosciences, University of Bremen; Gravity corer (Kiel type); KOL; M37/1; Meteor (1986); MUC; MultiCorer; Piston corer (Kiel type); SL
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pailler, Delphine; Bard, Edouard (2002): High frequency palaeoceanographic changes during the past 140000 yr recorded by the organic matter in sediments of the Iberian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(4), 431-452, https://doi.org/10.1016/S0031-0182(01)00444-8
    Publication Date: 2024-06-26
    Description: Biogenic records of the marine palaeoproductivity (carbonates, organic carbon, and C37 alkenones) and the molecular stratigraphy of past sea surface temperatures (SSTs; UK'37) were studied at high resolution in two cores of the Iberian Margin. The comparison of these records indicates that the oceanographic conditions switched abruptly during the past 160 kyr between three kinds of regimes. A first regime with high (17-22°C) SST and low productivity typifies the interglacial periods, marine isotopic stages (MIS) 5 and 1. Several periods during MIS 6, 2, and the terminations II and I are characterised by about 4-5°C colder SST and a higher organic matter accumulation, both of which define the second regime. This anticorrelation between SST and marine productivity suggests that these variations are related to the intensity of the coastal upwelling. By contrast with this upwelling behaviour, extremely low biological productivity and very cold SST (6-12°C) occurred during short phases of glacial MIS 6, 4, and 2, and as abrupt events (~1 kyr or less) during MIS 3. The three oceanographic regimes are consistent with micropalaeontological changes in the same cores based on foraminifera and diatoms. The general trend of these hydrologic changes follows the long-term glacial/interglacial cycle, but the millennium scale variability is clearly related to Heinrich events and Dansgaard-Oeschger cycles. Strengthening of the upwelling corresponds probably to an intensification of the subtropical atmospheric circulation over the North Atlantic which was influenced by the presence of continental ice sheets. However, extreme glacial conditions due to massive discharges of icebergs interrupted the upwelling. Interestingly, both terminations II and I coincided with strong but transient intensification of the upwelling.
    Keywords: CALYPSO; Calypso Corer; IMAGES; IMAGES I; International Marine Global Change Study; Marge Ibérique; Marion Dufresne (1995); MD101; MD952040; MD95-2040; MD952042; MD95-2042; Porto Seamount
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dolven, J K; Cortese, Giuseppe; Bjorklund, Kjell R (2002): A high-resolution radiolarian-derived paleotemperature record for the Late Pleistocene-Holocene in the Norwegian Sea. Paleoceanography, 17(4), 1072, https://doi.org/10.1029/2002PA000780
    Publication Date: 2024-06-26
    Description: Polycystine radiolarians are used to reconstruct summer sea surface temperatures (SSSTs) for the Late Pleistocene-Holocene (600-13,400 14C years BP) in the Norwegian Sea. At 13,200 14C years BP, the SSST was close to the average Holocene SSST (~12°C). It then gradually dropped to 7.1°C in the Younger Dryas. Near the Younger Dryas-Holocene transition (~10,000 14C years BP), the SSST increased 5°C in about 530 years. Four abrupt cooling events, with temperature drops of up to 2.1°C, are recognized during the Holocene: at 9340, 7100 ("8200 calendar years event"), 6400 and 1650 14C years BP. Radiolarian SSSTs and the isotopic signal from the GISP2 ice core are strongly coupled, stressing the importance of the Norwegian Sea as a mediator of heat/precipitation exchange between the North Atlantic, the atmosphere, and the Greenland ice sheet. Radiolarian and diatom-derived SSSTs display similarities, with the former not showing the recently reported Holocene cooling trend.
    Keywords: 79-4; AWI_Paleo; CALYPSO; Calypso Corer; Håkon Mosby; HM79; HM79-4; IMAGES; IMAGES I; International Marine Global Change Study; Late Pleistocene-Holocene; Marion Dufresne (1995); MD101; MD952011; MD95-2011; Norwegian Sea; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; PC; Piston corer; Quaternary Environment of the Eurasian North; QUEEN; Radiolarians; Voring Plateau
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Gerhard; Gersonde, Rainer; Wefer, Gerold (2002): Organic carbon, biogenic silica and diatom fluxes in the marginal winter sea ice zone and in the Polar Front Region: interannual variation and changes in composition. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9-10), 1721-1745, https://doi.org/10.1016/S0967-0645(02)00009-7
    Publication Date: 2024-06-26
    Description: Particle fluxes and composition were examined over 5 years at two mooring sites in the Polar Front Region (site PF: 50°09.S, 5°50.E) and in the marginal winter sea-ice zone (site BO: 54°30.S, 3°20.W) in the eastern Atlantic Sector of the Southern Ocean. Seasonality, interannual variability and the magnitude of total mass fluxes were higher at site BO compared to PF. Five-year averages and standard deviations (1Sigma) of total mass fluxes were 19.6±18.5 and 24.8±29.9 g m**-2 at PF and BO, respectively. Peak fluxes at site BO occurred in January 1995, but the highest peak was measured in February 1991 (almost 1300 mg m**-2 d**-1) followed by post-bloom sedimentation in March through May. This would imply a time shift of several months between the onset of sea-ice retreat in October and major sedimentation events recorded in January/February with the upper BO traps. At site PF, highest fluxes of about 500 mg m**-2 d**-1 were found between December and March. Blooms at site BO, influenced by sea ice as indicated by diatom species composition, seem to occur more sporadically (e.g., in 1991 and 1995). Annual diatom fluxes were 11.8x10**6 and 20x10**6 valves m**-2 during the deployments PF3 (1990) and BO1 (1991), respectively. At PF3, Fragilariopsis kerguelensis (37%) and Thalassionema nitzschioides fo1 (26.5%) dominated diatom flux, while F. kerguelensis (29%) and sea-ice-related algae (40%) were the main contributors to total diatom flux at site BO. During deployment BO1, the bloom collected in February was characterized by a very high molar Si:C of 8.8 that decreased almost continuously during the post-bloom phase, reaching a value of 1 in May. This change, however, was not documented in diatom species composition. We obtained a significant linear increase of biogenic opal with organic carbon fluxes at site PF and a highly significant but exponential relationship at site BO. Higher annual total mass fluxes were recorded at site BO, primarily due to elevated opal and lithogenic fluxes, corresponding to a higher silicate availability in the southern Antarctic Circumpolar Current. In contrast, higher mean organic carbon fluxes were obtained at site PF in accordance with elevated primary production and biomass. We obtained a three-fold higher molar Si:C ratio (5-year mean) for sinking particles collected with the upper BO traps (Si:C=4.0) compared to the PF (Si:C=1.3), consistent with the general pattern of Si and Fe availability. In particular at site BO, the Si:C ratios were usually high, even when accounting for organic carbon decay and biogenic silica (BSi) dissolution in the upper water column. At this study site, the Si:C ratios increased with lithogenic fluxes.
    Keywords: ANT-V/4; ANT-XII/2; ANT-XII/4; BO1; BO1_trap; BO3; BO3_trap; BO5; Bouvet Island; Center for Marine Environmental Sciences; MARUM; MOOR; Mooring; Mooring (long time); MOORY; PF1; PF3; PF5_trap; PF7; PF8; Polar Front; Polarstern; PS10; PS33; PS35 06AQANTXII_4; South Atlantic Ocean; Trap; TRAP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Broecker, Wallace S; Klas, Mieczyslawa; Clark, Elizabeth; Bonani, Georges; Ivy, Susan; Wolfli, Willy (1991): The influence of CaCO3 dissolution on core top radiocarbon ages for deep-sea sediments. Paleoceanography, 6(5), 593-608, https://doi.org/10.1029/91PA01768
    Publication Date: 2024-06-26
    Description: Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.
    Keywords: A150/180; A180-74; Age, 14C conventional; Age, dated; also published as VM28-122; Amerasian Basin; ARK-III/3; Atlantic Ocean; BC; Box corer; Calculated; CEPAG; CH182-36; CH73-013; CH7X; DEPTH, sediment/rock; Eastern Equatorial Pacific; Elevation of event; EN06601; EN066-21GGC; EN066-24PG; EN066-29GGC; EN066-32GGC; EN066-34PG; EN066-39GGC; EN066-45PG; EN066-47PG; EN066-51PG; Endeavor; ERDC; ERDC-077BX; ERDC-079BX; ERDC-083BX; ERDC-092BX; ERDC-108BX; ERDC-112BX; ERDC-120BX; ERDC-123BX; ERDC-125BX; ERDC-128BX; ERDC-129BX; ERDC-131BX; ERDC-135BX; ERDC-136BX; ERDC-139BX; ERDC-141BX; Event label; FA-527-3; FL-124; Fram Strait; GC; Giant box corer; GIK21295-4 PS07/586; GKG; Gravity corer; INMD; INMD-097BX; INMD-101BX; INMD-104BX; INMD-109BX; INMD-110BX; INMD-111BX; INMD-113BX; INMD-115BX; Jean Charcot; Lamont-Doherty Earth Observatory, Columbia University; Latitude of event; LDEO; Le Suroît; Longitude of event; Melville; North Atlantic; PC; Piston corer; PLDS-066BX; PLDS-068BX; PLDS-070BX; PLDS-072BX; PLDS-074BX; PLDS-077BX; PLDS-079BX; PLDS-081BX; PLDS-083BX; PLDS-085BX; PLDS-089BX; PLDS-090BX; PLDS-092BX; PLDS-107BX; PLDS-3; Pleiades; Polarstern; PS07; PS1295-4; Quaternary Environment of the Eurasian North; QUEEN; RC13; RC13-189; RC24; RC24-1; RC24-7; Reference/source; Robert Conrad; Sampling/drilling ice; Sedimentation rate; SU81-14; SU81-18; T-3; Thomas G. Thompson (1964); Thomas Washington; TR163-31; TT154-10; TT154-5; TTXXX; V19; V19-188; V23; V23-81; V25; V25-56; V28; V28-122; V28-238; V30; V30-40; V30-41; V30-51; V32; V32-8; V33/4-14; V33-88; V35; V35-5; Vema
    Type: Dataset
    Format: text/tab-separated-values, 219 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2024-06-26
    Keywords: CT; GeoB; Geosciences, University of Bremen; M44/4; M44/4-track; Meteor (1986); Red Sea/Golf of Aden; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 22.6 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-06-26
    Keywords: ARK-VII/3b; AWI_Paleo; DEPTH, sediment/rock; Giant box corer; GKG; Greenland Slope; Ice rafted debris, number of gravel; IRD-Counting (Grobe, 1987); Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS17; PS17/241; PS1918-2; Quaternary Environment of the Eurasian North; QUEEN
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-06-26
    Keywords: ANT-XI/3; AWI_Paleo; Bellingshausen Sea; DEPTH, sediment/rock; Gravity corer (Kiel type); Ice rafted debris, number of gravel; IRD-Counting (Grobe, 1987); Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS2553-3; PS29; PS29/070; SL
    Type: Dataset
    Format: text/tab-separated-values, 997 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...