ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (176)
  • Other Sources
  • Binding Sites  (112)
  • Models, Molecular  (90)
  • American Association for the Advancement of Science (AAAS)  (176)
  • Springer
  • 2015-2019  (7)
  • 2005-2009
  • 1990-1994  (169)
  • 1980-1984
  • 2016  (7)
  • 1993  (88)
  • 1991  (81)
  • Natural Sciences in General  (176)
  • Philosophy
Collection
  • Articles  (176)
  • Other Sources
Keywords
Publisher
Years
  • 2015-2019  (7)
  • 2005-2009
  • 1990-1994  (169)
  • 1980-1984
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-19
    Description: For self-splicing of Tetrahymena ribosomal RNA precursor, guanosine binding is required for 5' splice-site cleavage and exon ligation. Whether these two reactions use the same or different guanosine-binding sites has been debated. A double mutation in a previously identified guanosine-binding site within the intron resulted in preference for adenosine (or adenosine triphosphate) as the substrate for cleavage at the 5' splice site. However, splicing was blocked in the exon ligation step. Blockage was reversed by a change from guanine to adenine at the 3' splice site. These results indicate that a single determinant specifies nucleoside binding for both steps of splicing. Furthermore, it suggests that RNA could form an active site specific for adenosine triphosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Been, M D -- Perrotta, A T -- GM-40689/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 19;252(5004):434-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2017681" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Base Sequence ; Binding Sites ; Exons ; Guanosine/metabolism ; *Introns ; Magnesium/pharmacology ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis ; RNA Precursors/chemistry/genetics ; *RNA Splicing ; RNA, Catalytic/metabolism ; Tetrahymena/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-05-31
    Description: An in vivo selection system for isolating targets of DNA binding proteins in yeast was developed and used to identify the DNA binding site for the NGFI-B protein, a member of the steroid-thyroid hormone receptor superfamily. The feasibility of the technique was verified by selecting DNA fragments that contained binding sites for GCN4, a well-characterized yeast transcriptional activator. The DNA binding domain of NGFI-B, expressed as part of a LexA-NGFI-B-GAL4 chimeric activator, was then used to isolate a rat genomic DNA fragment that contained an NGFI-B binding site. The NGFI-B response element (NBRE) is similar to but functionally distinct from elements recognized by the estrogen and thyroid hormone receptors and the hormone receptor-like proteins COUP-TF, CF1, and H-2RIIBP. Cotransfection experiments in mammalian cells demonstrated that NGFI-B can activate transcription from the NBRE with or without its putative ligand binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Fahrner, T J -- Johnston, M -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1296-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Cloning, Molecular ; DNA, Fungal/*metabolism ; DNA-Binding Proteins/genetics/*metabolism/pharmacology ; Fungal Proteins/metabolism ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Plasmids ; *Protein Kinases ; Rats ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Repressor Proteins ; Saccharomyces cerevisiae/*genetics ; *Saccharomyces cerevisiae Proteins ; *Serine Endopeptidases ; Transcription Factors/genetics/*metabolism/pharmacology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-12-20
    Description: Rap1A is a low molecular weight guanosine triphosphate (GTP)-binding protein in human neutrophil membranes whose cellular function is unknown. Rap1A was found to form stoichiometric complexes with the cytochrome b558 component of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The (guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S)-bound form of Rap1A bound more tightly to cytochrome b558 than did the guanosine diphosphate-bound form. No complex formation was observed between cytochrome b558 and H-Ras-GTP-gamma-S or Rap1A-GTP-gamma-S that had been heat-inactivated, nor between Rap1A-GTP-gamma-S and hydrophobic proteins serving as controls. Complex formation between Rap1A-GTP-gamma-S and cytochrome b558 was inhibited by phosphorylation of Rap1A with cyclic adenosine monophosphate (cAMP)-dependent protein kinase. These observations suggest that Rap1A may participate in the structure or regulation of the NADPH oxidase system and that this function of the Rap1A protein may be altered by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, G M -- Quilliam, L A -- Bohl, B P -- Jesaitis, A J -- Quinn, M T -- 5RO126711/PHS HHS/ -- GM39434/GM/NIGMS NIH HHS/ -- GM44428/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1794-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763330" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatography, Gel ; Cytochrome b Group/isolation & purification/*metabolism ; GTP-Binding Proteins/antagonists & inhibitors/isolation & ; purification/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Humans ; Kinetics ; Macromolecular Substances ; NADH, NADPH Oxidoreductases/*metabolism ; NADPH Oxidase ; Neutrophils/enzymology ; Phosphorylation ; Protein Binding ; Protein Kinase C/metabolism ; Proto-Oncogene Proteins/metabolism ; Recombinant Proteins/antagonists & inhibitors/isolation & purification/metabolism ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-02-01
    Description: Rhodopsin and the visual pigments are a distinct group within the family of G-protein-linked receptors in that they have a covalently bound ligand, the 11-cis-retinal chromophore, whereas all of the other receptors bind their agonists through noncovalent interactions. The retinal chromophore in rhodopsin is bound by means of a protonated Schiff base linkage to the epsilon-amino group of Lys-296. Two rhodopsin mutants have been constructed, K296G and K296A, in which the covalent linkage to the chromophore is removed. Both mutants form a pigment with an absorption spectrum close to that of the wild type when reconstituted with the Schiff base of an n-alkylamine and 11-cis-retinal. In addition, the pigment formed from K296G and the n-propylamine Schiff base of 11-cis-retinal was found to activate transducin in a light-dependent manner, with 30 to 40% of the specific activity measured for the wild-type protein. It appears that the covalent bond is not essential for binding of the chromophore or for catalytic activation of transducin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhukovsky, E A -- Robinson, P R -- Oprian, D D -- 5T32 GM07596-11/GM/NIGMS NIH HHS/ -- EY07965/EY/NEI NIH HHS/ -- R01 EY007965/EY/NEI NIH HHS/ -- S07 RR07044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 1;251(4993):558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1990431" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Kinetics ; Mutagenesis, Site-Directed ; Protein Binding ; Retinaldehyde/*metabolism ; Rhodopsin/genetics/*metabolism/radiation effects ; Schiff Bases ; Spectrophotometry ; Transducin/*metabolism/radiation effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: RAP30/74 is a heteromeric general transcription initiation factor that binds to mammalian RNA polymerase II. The RAP30 subunit contains a region that is similar in amino acid sequence to the RNA polymerase-binding domain of the Escherichia coli transcription initiation factor sigma 70 (sigma 70). Mammalian RNA polymerase II specifically protected a serine residue in the sigma 70-related region of RAP30 from phosphorylation in vitro. In addition, human RAP30/74 bound to Escherichia coli RNA polymerase and was displaced by sigma 70. These results suggest that RAP30 and sigma 70 have functionally related RNA polymerase-binding regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCracken, S -- Greenblatt, J -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Centrifugation, Density Gradient ; Cyanogen Bromide ; Cyclic AMP/pharmacology ; Escherichia coli/*analysis/enzymology ; Humans ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Sigma Factor/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism ; *Transcription Factors, TFII ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-07-26
    Description: The structure of a 20-amino acid peptide inhibitor bound to the catalytic subunit of cyclic AMP-dependent protein kinase, and its interactions with the enzyme, are described. The x-ray crystal structure of the complex is the basis of the analysis. The peptide inhibitor, derived from a naturally occurring heat-stable protein kinase inhibitor, contains an amphipathic helix that is followed by a turn and an extended conformation. The extended region occupies the cleft between the two lobes of the enzyme and contains a five-residue consensus recognition sequence common to all substrates and peptide inhibitors of the catalytic subunit. The helical portion of the peptide binds to a hydrophobic groove and conveys high affinity binding. Loops from both domains converge at the active site and contribute to a network of conserved residues at the sites of magnesium adenosine triphosphate binding and catalysis. Amino acids associated with peptide recognition, nonconserved, extend over a large surface area.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knighton, D R -- Zheng, J H -- Ten Eyck, L F -- Xuong, N H -- Taylor, S S -- Sowadski, J M -- RR01644/RR/NCRR NIH HHS/ -- T32CA09523/CA/NCI NIH HHS/ -- T32DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):414-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego, La Jolla 92093-0654.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1862343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carrier Proteins/*chemistry/metabolism ; Computer Simulation ; Enzyme Inhibitors/*chemistry ; *Intracellular Signaling Peptides and Proteins ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Kinases/*chemistry/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-06-14
    Description: In the interleukin-2 (IL-2) system, intracellular signal transduction is triggered by the beta chain of the IL-2 receptor (IL-2R beta); however, the responsible signaling mechanism remains unidentified. Evidence for the formation of a stable complex of IL-2R beta and the lymphocyte-specific protein tyrosine kinase p56lck is presented. Specific association sites were identified in the tyrosine kinase catalytic domain of p56lck and in the cytoplasmic domain of IL-2R beta. As a result of interaction, IL-2R beta became phosphorylated in vitro by p56lck. Treatment of T lymphocytes with IL-2 promotes p56lck kinase activity. These data suggest the participation of p56lck as a critical signaling molecule downstream of IL-2R via a novel interaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatakeyama, M -- Kono, T -- Kobayashi, N -- Kawahara, A -- Levin, S D -- Perlmutter, R M -- Taniguchi, T -- New York, N.Y. -- Science. 1991 Jun 14;252(5012):1523-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047859" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Antigens, CD/immunology ; Base Sequence ; Binding Sites ; Cell Division/drug effects ; Cell Line ; Humans ; Interleukin-2/pharmacology ; Killer Cells, Natural/cytology/drug effects/immunology ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Lymphocytes/drug effects/*immunology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Oligonucleotide Probes ; Protein-Tyrosine Kinases/genetics/isolation & purification/*metabolism ; Receptors, Interleukin-2/genetics/isolation & purification/*physiology ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-03-22
    Description: Serine 130 is one of seven residues that form a total of seven hydrogen bonds with the sulfate completely sequestered deep in the cleft between the two lobes of the bilobate sulfate-binding protein from Salmonella typhimurium. This residue has been replaced with Cys, Ala, and Gly by site-directed mutagenesis in an Escherichia coli expression system. Replacement with the isosteric Cys caused a 3200-fold decrease in the sulfate-binding activity relative to the wild-type activity, whereas replacement with Ala and Gly resulted in only 100- and 15-fold decreases, respectively. The effect of the Cys substitution is attributed largely to steric effect, whereas the Gly substitution more nearly reflects the loss of one hydrogen bond to the bound sulfate with a strength of only 1.6 kilocalories per mole.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, J J -- Quiocho, F A -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1900953" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Binding Sites ; Carrier Proteins/chemistry/*genetics/metabolism ; Cysteine ; DNA Mutational Analysis ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; *Periplasmic Binding Proteins ; Salmonella typhimurium ; Serine ; Structure-Activity Relationship ; Sulfates/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Que, L Jr -- New York, N.Y. -- Science. 1991 Jul 19;253(5017):273-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Minnesota, Minneapolis 55455.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1857963" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Hemerythrin/metabolism ; Histidine ; Iron/*metabolism ; Macromolecular Substances ; Models, Theoretical ; Oxygen/*metabolism ; Ribonucleotide Reductases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-12
    Description: The most frequently occurring RNA hairpins in 16S and 23S ribosomal RNA contain a tetranucleotide loop that has a GNRA consensus sequence. The solution structures of the GCAA and GAAA hairpins have been determined by nuclear magnetic resonance spectroscopy. Both loops contain an unusual G-A base pair between the first and last residue in the loop, a hydrogen bond between a G base and a phosphate, extensive base stacking, and a hydrogen bond between a sugar 2'-end OH and a base. These interactions explain the high stability of these hairpins and the sequence requirements for the variant and invariant nucleotides in the GNRA tetranucleotide loop family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heus, H A -- Pardi, A -- AI 27026/AI/NIAID NIH HHS/ -- AI 30726/AI/NIAID NIH HHS/ -- RR03283/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):191-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1712983" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Graphics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry ; RNA/chemistry/*ultrastructure ; Structure-Activity Relationship ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...