ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Earth Resources and Remote Sensing
  • Industrial Chemistry
  • Inorganic Chemistry
  • unknown
  • 1995-1999
  • 1990-1994  (2)
  • 1950-1954
  • 1990  (2)
Collection
Years
  • 1995-1999
  • 1990-1994  (2)
  • 1950-1954
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.
    Keywords: Earth Resources and Remote Sensing
    Type: Spinoff 1990; 106-107; NASA-NP-138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: The Geophysical and Environmental Research Imaging Spectrometer (GERIS) was flown over the Cripple Creek mining district in south-central Colorado to improve the geological understanding of the district. As part of the study, an airborne mapping technique was developed for the discrimination of the ferric iron minerals hematite, goethite, and jarosite, minerals often important indicators of the distribution of economic mineralization. A software technique was developed which uses the binary encoding of spectral slopes to identify the mineral hematite from the group goethite/jarosite. Mixtures of hematite and goethite can also be detected with GERIS data. The study included district-wide field mapping and spectral measurements to evaluate the accuracy of the image classifications. The ARC/INFO geographic information system (GIS) was a useful tool which allowed quantitative comparison of the field mapping and GERIS image data sets. The study results demonstrate the ability to discriminate individual iron minerals using imaging spectroscopy, and the development of a rapid mapping technique useful in the reconnaissance stage of minerals exploration.
    Keywords: Earth Resources and Remote Sensing
    Type: (ISSN 0000-0170); 1707-1709
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...