ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (85)
  • Saccharomyces cerevisiae  (55)
  • taxonomy
  • Springer  (73)
  • Wiley-Blackwell  (12)
  • American Chemical Society (ACS)
  • 2020-2024
  • 2015-2019
  • 2005-2009
  • 1990-1994  (85)
  • 1980-1984
  • 1990  (85)
  • Biology  (85)
Collection
  • Articles  (85)
Publisher
  • Springer  (73)
  • Wiley-Blackwell  (12)
  • American Chemical Society (ACS)
Years
  • 2020-2024
  • 2015-2019
  • 2005-2009
  • 1990-1994  (85)
  • 1980-1984
Year
  • 1
    ISSN: 1432-0983
    Keywords: 2-oxoglutarate dehydrogenase ; Saccharomyces cerevisiae ; rad52-mediated chromosome loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ogd1 mutants of Saccharomyces cerevisiae are deficient in mitochondrial 2-oxoglutarate dehydrogenase activity; they cannot grow on glycerol and produce an increased amount of organic acids during growth on glucose as substrate. Using gamma ray-induced rad52-mediated chromosome loss the ogd1 mutation can be assigned to chromosome IX. Tetrad analysis of crosses between ogd1 and other markers on chromosome IX revealed that the OGD1 gene maps on the left arm of this chromosome 1.9 cM from his5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Orotate phosphoribosyl transferase ; Nucleotide sequence-5-phosphoribosyl 1-pyrophosphate (5PRPP)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Orotate phosphoribosyl transferase (OPRTase) catalyses the transformation of orotate to OMP in the pyrimidine pathway. In the yeast Saccharomyces cerevisiae, the URA5 gene is known to encode this enzyme activity. In this paper we present the cloning and sequencing of a yeast gene, named URA10, encoding a second OPRTase enzyme. Comparison of the predicted amino acid sequences between URA5 and URA10 genes shows more than 75% similarity. These sequences have also been compared to those of Escherichia coli, Podospora anserina, Sordaria macrospora and Dictyostelium discoideum. Remarkable similarities in the primary structure of these proteins have been found. Gene disruption experiments revealed that URA10 gene expression is responsible for the leaky phenotype of a ura5 mutant. Assays of OPRTase activity in extracts from ura5 and ura10 mutants indicate that the URA10 product contributes only 20% of the total activity found in wild type cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mutants ; Farnesyl diphosphate synthetase ; Ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two yeast mutant strains auxotrophic for ergosterol and blocked in farnesyl diphosphate synthetase (EC 2.5.1.1) were isolated. Genetic analysis has shown that these mutant strains carry additional mutations in the ergosterol pathway besides erg20-1 and erg20-2 which affect FPP synthetase. The novel feature of these mutants is their ability to excrete prenyl alcohols (farnesol and geraniol). As geraniol is toxic for yeast cells, the above leaky mutations in FPP synthetase have to be associated with others in the sterol pathway, in order to slow down geraniol synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Glucose oxidase ; Aspergillus ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report the cloning of the Aspergillus niger glucose oxidase gene and its use to elevate glucose oxidase productivity in A. niger by increasing the gene dosage. In addition, the gene has been introduced into A. nidulans where it provides the novel capacity to produce glucose oxidase. A plasmid, in which DNA encoding the mature form of glucose oxidase was preceded by a Saccharomyces cerevisiae secretion signal, effected high-level production of extracellular glucose oxidase in this yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 18 (1990), S. 401-403 
    ISSN: 1432-0983
    Keywords: Baking yeast ; Saccharomyces cerevisiae ; Dough leavening ; Benomyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To investigate the leavening ability of yeast in dough, chromosome loss was induced by benomyl treatment in YOY1037, a diploid between a baking strain and a laboratory strain, and its effect on the leavening ability was studied. When benomyl-treated cells were spread on plates with a dye indicator for ploidy, about 20% of the visible colonies were stained dark blue or dark purple; the rest stained pale blue, similar to the diploid YOY1037. Strains showing the MATα phenotype, and non-galactose fermenting strains, apparently having lost particular chromosomes, were observed only in those with darkcoloured colonies. Strains with dark-coloured colonies showed a wider range of leavening ability than did those with pale-coloured colonies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: Xylitol dehydrogenase gene ; Pichia stipitis ; Saccharomyces cerevisiae ; Xylose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A P. stipitis cDNA library in λgt11 was screened using antisera against P. stipitis xylose reductase and xylitol dehydrogenase, respectively. The resulting cDNA clones served as probes for screening a P. stipitis genomic library. The genomic XYL2 gene was isolated and the nucleotide sequence of the 1089 bp structural gene, and of adjacent non-coding regions, was determined. The XYL2 open-reading frame codes for a protein of 363 amino acids with a predicted molecular mass of 38.5 kDa. The XYL2 gene is actively expressed in S. cerevisiae transformants. S. cerevisiae cells transformed with a plasmid, pRD1, containing both the xylose reductase gene (XYL1) and the xylitol dehydrogenase gene (XYL2), were able to grow on xylose as a sole carbon source. In contrast to aerobic glucose metabolism, S. cerevisiae XYL1-XYL2 transformants utilize xylose almost entirely oxidatively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0983
    Keywords: Mutagen hyper-resistance ; Nitrogen mustard ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A screening of haploid yeast strains for enhanced resistance to nitrogen mustard (HN2) yielded a recessive mutant allele, hnm1, that conferred hyper-resistance (HYR) to HN2. Diploids, homo- or heterozygous for the HNM1 locus, exhibit normal wild-type like resistance while homozygosity for hnm1 leads to the phenotype HYR to HN2. The hnm1 mutation could be found in yeast strains proficient or deficient in different DNA repair systems. In these mostly HN2-sensitive haploid repair-deficient mutants, hnm1 acted as a partial suppressor of HN2 sensitivity. All isolated recessive mutations conferring hyper-resistance belonged to a single complementations group. The HYR to HN2 phenotype was maximally expressed in growing cells and was associated with reduced mutability by HN2. HNM1 most probably controls uptake of HN2 which would be impaired in the hnm1 mutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; G418 resistance ; Gene cartridges ; Heterologous Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Coding sequence cartridges for aminoglycoside phosphotransferase (APT) were isolated from bacterial transposon Tn903. When incorporated into a heterologous gene construction utilising the PGK1 promoter and terminator, the heterologous APT gene provided a G418-resistance determinant that functioned efficiently as a dominant marker for yeast in both multiple- and single-copy. Transformant colonies on selective medium appeared rapidly, within 36–48 h, and growth rate of the transformed cells was normal. A simple and highly sensitive radiolabelling assay for APT enzyme activity was developed for use with crude cell protein extracts. Enzyme activity units were equated to the amount of APT protein present in the cells, and the APT protein was shown to be stable in yeast. Heterologous APT expression was 130-fold reduced compared with homologous PGK1. This resulted from an estimated two-fold decrease in mRNA level and a 65-fold decrease in translation efficiency. The latter was unaffected by AUG sequence context change, but corresponded with a high frequency of minor codons in the APT-coding sequence. APT can be used as a semi-quantitative reporter of gene expression, whose useful features are in vivo detection via the G418-resistance phenotype and powerful cell-free assay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Episomal plasmid ; Copy number control ; Plasmid maintenance ; Glycolytic enzyme levels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This study demonstrates how varying the promoter strength of an essential gene on a yeast 2μORI-STB YEp multicopy vector can influence vector copy levels. A phosphoglycerate kinase gene (PGK) on this plasmid was made essential for fermentative growth by transformation into a pgk - yeast strain. When in these PGK- transformants the requirement for PGK expression was the sole selective criterion for plasmid maintenance, PGK promoter activity was inversely related to vector copy levels. Plasmids with an efficiently-transcribed PGK gene were maintained at approximately one copy per cell, whereas those lacking the UAS that normally directs high basal PGK transcription levels were present at up to 10–15 copies. All cultures of these PGK+ transformants contained only a low proportion of pgk - cells. Since mitotic loss of the plasmid arrests growth through loss of a functional PGK allele, PGK confers high stability to the YEp vector in such a pgk - genetic background. In this system YEp vector levels are probably influenced by PGK transcription because high expression of PGK is needed in rapid fermentative growth. Remarkably, low plasmid PGK promoter activity caused PGK mRNA levels slightly higher than those found in yeast with normal PGK regulation. A higher plasmid copy number is therefore not the only factor counteracting the effects of low PGK transcription, and it is possible that PGK mRNA becomes more stable in response to inefficient PGK transcription.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Sporulation ; Inessential genes ; Genome organization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...