ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • AMS (American Meteorological Society)  (3)
  • Nature Publishing Group
  • 2010-2014
  • 2000-2004
  • 1985-1989  (5)
  • 1960-1964
  • 1989  (5)
  • 1
    Publication Date: 2018-03-02
    Description: RECENT advances in 40Ar/39Ar dating1,2 have made it possible to date individual K-feldspar grains from Pleistocene tephra, a capability that greatly improves the reliability and temporal resolving power of the method. Here we apply these new techniques to the dating of a phonolite tephra from the East Eifel volcanic field in West Germany, which is sandwiched between loess and palaeosol (alfisol) deposits, and which was therefore erupted during the transition from a glacial to an interglacial period. Our age estimate for this transition is 215±4 kyr (1 σ), which has important implications for the marine δ18O timescale and for models of global climate change during the Pleistocene. The results show that single-grain dating can detect and compensate for the large quantities of xenocrystic contaminants which are found in many tephra deposits. This technique could be used to date the tephra layers found in marine sediment cores and the results could greatly enhance the reliability of the marine δ18O timescale for more rigorous Fourier analysis testing of the Milankovitch hypothesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 19 (10). pp. 1440-1448.
    Publication Date: 2020-08-04
    Description: Historical data from the region between the Greenwich meridian and the African continental shelf are used to compute the offshore geostrophic transport of the Benguela Current. At 32°S, the Benguela Current is located near the African coast, transporting about 21 Sv (1 Sv = 106 m3 s−1) of surface water toward the north relative to a potential density surface lying between the upper branch of Circumpolar Deep Water and the North Atlantic Deep Watar. Two warm core eddies of probable Agulhas Current origin an observed west of the Benguela Current at 32°S. Near 30°S, the Benguela Current turns toward the northwest and begins to separate from the eastern boundary. It carries about 18 Sv of surface water across 28°S. The current then turns mainly toward the west to flow over a relatively deep segment of the Walvis Ridge south of the Valdivia Bank. A surface current with northward surface of about 10 cm s−1 flows along the western side of the Valdivia Bank, while another northward surface current flows at about 20 cm s−1 some 300 km west of the bank. About 3 Sv of surface now do not leave the Cape Basin south of the Vaidivia Bank, but instead drift northward as a wide. sluggish flow out of the northern end of the Cape Basin. Because of the more southerly seaward extensions of most of the Benguela Current, there are no deep-reaching interactions observed between this current and the cyclonic gyre in the Angola Basin east of the Greenwich meridian. Beneath the surface layer, about 4–5 Sv of Antarctic Intermediate Water are carried northward across 32° and 28°S by the Benguela Current, essentially all of which turns westward to cross the Greenwich meridian south of 24°S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-16
    Description: ROOTH proposed that the Younger Dryas cold episode, which chilled the North Atlantic region from 11,000 to 10,000 yr BP, was initiated by a diversion of meltwater from the Mississippi drainage to the St Lawrence drainage system. The link between these events is postulated to be a turnoff, during the Younger Dryas cold episode, of the North Atlantic's conveyor-belt circulation system which currently supplies an enormous amount of heat to the atmosphere over the North Atlantic region2. This turnoff is attributed to a reduction in surface-water salinity, and hence also in density, of the waters in the region where North Atlantic Deep Water (NADW) now forms. Here we present oxygen isotope and accelerator radiocarbon measurements on planktonic foraminifera from Orca Basin core EN32-PC4 which reveal a significant reduction in meltwater flow through the Mississippi River to the Gulf of Mexico from about 11,200 to 10,000 radiocarbon years ago. This finding is consistent with the record for Lake Agassiz which indicates that the meltwater from the southwestern margin of the Laurentide Ice Sheet was diverted to the northern Atlantic Ocean through the St Lawrence valley during the interval from ~11,000 to 10,000 years before present (yr BP).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 19 . pp. 77-97.
    Publication Date: 2018-04-05
    Description: We report a study of a coastal frontal zone of the southeastern United States based on a field experiment and numerical modeling. The study was conducted in the spring of 1985 during weak to moderate wind stress and strong input of buoyancy from solar radiation and river discharge. The study confirms that the structure and slope of the frontal zone depends on a combination of wind stress and cross-shelf advection of buoyancy. A cross-shelf/depth two-dimensional (x, y), time-dependent numerical model illustrated the response of the frontal zone to the local wind stress regimes. A comparison of model results with field data showed that the model successfully predicted onsets of stratification and mixing. When alongshore wind stress was negative (southward), isopycnals in the frontal zone steepened due to a combination of horizontal advection and vertical convection. When stress was positive (northward), the offshore advection of low density water flattened the isopycnals and potential energy decreased, demonstrating that horizontal advection terms are important in the equation of conservation of buoyancy. The model predicts die offshore advection of lenses of less dense water during upwelling-favorable wind stress. These lenses are of the order of 20 km in cross-shelf scale and represent an efficient mechanism to export nearshore water. The lenses consist of a mixture of low-salinity coastal water and continental shelf water originating further offshore and advected onshore along the bottom. The mean flow inside the frontal zone opposed the mean alongshore wind stress. Part of the alongshore flow was in geostrophy with the cross-shore pressure gradient; the other part was due to an alongshore pressure gradient force (kinematic) of about 1 × 10−6 m s−2 (equivalent sea surface slope = 1 × 10−7), which was trapped along the coast with an offshore width scale of O(10 km). It is likely that the alongshore extent of this pressure gradient was governed by the scale at which freshwater is injected to the continental shelf, i.e., 20–30 km. The pressure gradient force immediately outside of the frontal zone was about −5 × 10−7 m s−2 in the direction of the mean alongshore wind stress. It is hypothesized that, as a result of wind setup and freshwater influx, the northward pressure gradient forced over outer shelf/slope by the Gulf Stream decreases in magnitude onshore, and can even change sign across a nearshore frontal zone of O(10 km). The implied flow field near the frontal zone is therefore highly three-dimensional with |∂v/∂y|≈|∂u/∂x|, where (u, v) are velocities in the cross-shore (x) and alongshore (y) directions, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 46 (5). pp. 661-686.
    Publication Date: 2018-04-16
    Description: The sensitivity of the global climate system to interannual variability of he Eurasian snow cover has been investigated with numerical models. It was found that heavier than normal Eurasian snow cover in spring leads to a “poor” monsoon over Southeast Asia thereby verifying an idea over 100 years old. The poor monsoon was characterized by reduced rainfall over India and Burma, reduced wind stress over the Indian Ocean, lower than normal temperatures on the Asian land mass and in the overlying atmospheric column, reduced tropical jet, increased soil moisture, and other features associated with poor monsoons. Lighter than normal snow cover led to a “good” monsoon with atmospheric anomalies like those described above but of opposite sign. Remote responses from the snow field perturbation include readjustment of the Northern Hemispheric mass field in midlatitude, an equatorially symmetric response of the tropical geopotential height and temperature field and weak, but significant, perturbations in the surface wind stress and heat flux in the tropical Pacific. The physics responsible for the regional response involves all elements of both the surface heat budget and heat budget of the full atmospheric column. In essence, the snow, soil and atmospheric moisture all act to keep the land and overlying atmospheric column colder than normal during a heavy snow simulation thus reducing the land–ocean temperature contrast needed to initiate the monsoon. The remote responses are driven by heating anomalies associated with both large scale air-sea interactions and precipitation events. The model winds from the heavy snow experiment were used to drive an ocean model. The SST field in that model developed a weak El Niño in the equatorial Pacific. A coupled ocean-atmosphere model simulation perturbed only by anomalous Eurasian snow cover was also run and it developed a much stranger El Niño in the Pacific. The coupled system clearly amplified the wind stress anomaly associated with the poor monsoon. These results show the important role of an evolving (not specified) sea surface temperature in numerical experiments and the real climate system. Our general results also demonstrate the importance of land processes in global climate dynamics and their possible role as one of the factors that could trigger ENSO events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...