ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (6)
  • 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks  (5)
  • Elsevier  (9)
  • Wiley  (1)
  • American Chemical Society
  • American Chemical Society (ACS)
  • 2010-2014  (10)
  • 1985-1989
  • 1980-1984
  • 1950-1954
  • 2010  (10)
  • 1989
Collection
Years
  • 2010-2014  (10)
  • 1985-1989
  • 1980-1984
  • 1950-1954
Year
  • 1
    Publication Date: 2021-06-15
    Description: No eruption, no caldera collapse, and no landslide can take place in a volcano unless its state of stress is suitable for the associated type of rock failure. The state of stress, in turn, results in deformation, and both stress and deformation depend on the mechanical properties of the rocks that constitute the volcano. Understanding stress and deformation in volcanoes is thus of fundamental importance for understanding unrest periods and for accurate forecasting volcano failure, such as may result in large-scale lateral and vertical collapses and eruptions.
    Description: Published
    Description: 1-3
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: stress, deformation, volcano tectonics, physical propertie of volcanic rocks ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between −7.2‰ and −5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).
    Description: Published
    Description: 49-56
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: CO2-rich thermomineral waters ; mantle volatiles ; isotopes ; Chaves geothermal system ; N-Portugal ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: Published
    Description: 110-122
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: SO2 fluxes emitted by Stromboli during the 27th February–2nd April 2007 effusive eruption were regularly measured both by an automatic network of scanning ultraviolet spectrometers and by traverse measurements conducted by boat and helicopter. The results from both methodologies agree reasonably well, providing a validation for the automatic flux calculations produced by the network. Approximately 22,000 t of SO2 were degassed during the course of the 35 day eruption at an average rate of 620 t per day. Such a degassing rate is much higher than that normally observed (150–200 t/d), because the cross-sectional area occupied by ascending degassed magma is much greater than normal during the effusion, as descending, degassed magma that would normally occupy a large volume of the conduit is absent. We propose that the hydrostatically controlled magma level within Stromboli's conduit is the main control on eruptive activity, and that a high effusion rate led to the depressurisation of an intermediate magma reservoir, creating a decrease in the magma level until it dropped beneath the eruptive fissure, causing the rapid end of the eruption. A significant decrease in SO2 flux was observed prior to a paroxysm on 15th March 2007, suggesting that choking of the gas flowing in the conduit may have induced a coalescence event, and consequent rapid ascent of gas and magma that produced the explosion.
    Description: Published
    Description: 214-220
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: SO2 flux ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Description: Published
    Description: Davos, Switzerland
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: Nitrogen Isotopes ; Subduction ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Despite its ultra-potassic, basic geochemistry (40≤SiO2≤50 wt.%), the Alban Hills Volcanic District was characterized by a highly explosive phase of activity, the Tuscolano–Artemisio phase, which emplaced very large volumes (several tens of km3 each cycle) of pyroclastic-flow deposits, mafic in composition (SiO2≤45 wt.%) in the time span 600–350 ka. In contrast to the abundance of pyroclastic-flow deposits, very scarce basal Plinian deposits and, more in general, fallout deposits are associated to these products. While some of the pyroclastic-flow deposits have been described in previous literature, no specific work on the Tuscolano–Artemisio phase of activity has been published so far. In particular, very little is known on the products of the early stages, as well as of the final, post-caldera activity of each eruptive cycle. Here we present a comprehensive stratigraphic and geochronologic study of the Tuscolano–Artemisio phase of activity, along with new textural and petrographic data. We describe the detailed stratigraphy and petrography of five reference sections, where the most complete suites of products of the eruptive cycles, comprising the initial through the final stages, are exposed.We assess the geochronology of these sections by means of 18 new 40Ar/39Ar age determinations, integrating them with 16 previously performed, aimed to describe the eruptive behavior of the Alban Hills Volcanic District during this phase of activity, and to assess the recurrence time and the duration of the dormancies. The overall explosive activity appears to be strictly clustered in five eruptive cycles, fairly regularly spaced in time and separated by very long dormancies, in the order of several ten of kyr, during which no volumetrically appreciable eruption occurred, as the lack of deposits dated to this time-interval testify.We propose a volcanotectonic model that explains this peculiar eruptive behavior, unparalleled in the other coeval volcanic districts of the Tyrrhenian margin of Italy, as related to the local transpressive tectonic regime.
    Description: Published
    Description: 217-232
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Alban Hills 40Ar/39Ar geochronology explosive eruptions K-alkaline magmas pyroclastic-flow deposits volcanotectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The recent availability of small, cheap ultraviolet spectrometers has facilitated the rapid deployment of automated networks of scanning instruments at several volcanoes, measuring volcanic SO2 gas flux at high frequency. These networks open up a range of other applications, including tomographic reconstruction of the gas distribution which is of potential use for both risk mitigation, particularly to air traffic, and environmental impact modelling. Here we present a methodology for visualising reconstructed plumes using virtual globes, such as GoogleEarth, which allows animations of the evolution of the gas plume to be displayed and easily shared on a common platform. We detail the process used to convert tomographically reconstructed cross-sections into animated gas plume models, describe how this process is automated and present results from the scanning network around Mt.Etna, Sicily. We achieved an average rate of one frame every12 min, providing a good visual representation of the plume which can be examined from all angles. Increating these models, an approximation to turbulent diffusion in the atmosphere was required. To this end we derived the value of the turbulent diffusion coefficient for quiescent conditions near Etna to be around 200–500 m2s-1.
    Description: Published
    Description: 1837-1842
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic Plumes ; Tomography ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation.
    Description: Published
    Description: 265-269
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; fire-fountains ; vesicle textures ; volcanic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: A series of computer microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometer scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. Thegeometryof thevesicle (gas-filledvoid) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two- dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: high-resolution three-dimensional imaging ; X-ray computed microtomography ; volcanic eruptions ; volcanic rock textures ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We measured volcanic gas emissions from the northeast crater (NEC) and central crater (CC) of Mount Etna on 21st July 2008, and 3rd and 31st August 2009, using a novel, lightweight open-path Fourier transform infrared spectrometry (OP-FTIR) in active mode with a portable infrared lamp. Contemporaneously we measured the SO2 flux of the total gas emission released by the combined summit craters 14 km downwind and the SO2 flux emitted by the NEC measured at the summit. Combining these data we determined the flux of the major volcanic components H2O, CO2, SO2, HCl and HF emitted individually from CC and NEC craters. The results reveal similar SO2/HCl ratios but distinct CO2/SO2 ratios (1.3 and 10.9 for NEC and CC, respectively) and an order of magnitude greater CO2 flux from the CC compared with the NEC. A simple model in which the NEC branches from a central feeding conduit at a depth of ~2 km can reproduce these observations. We highlight that in such a system short-term variations in CO2/SO2 ratios at each crater can occur due to minor variations in the magma/gas flux entering each conduit at the branch, without an overall change in magma supply. CO2/ SO2 variations measured at individual craters may therefore be unrepresentative of the volcanic system and require cautious interpretation. Monitoring of the total CO2 and SO2 fluxes emitted from each crater is, on the contrary, an optimal monitoring strategy and can be achieved using a combination of CO2/SO2 instruments and SO2 imaging cameras
    Description: INGV-DPC “Sicilia” Project (Gas plumeTask).
    Description: Published
    Description: 368-376
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: magma degassing, OP-FTIR, Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...