ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymers  (3)
  • Alkenes
  • Wiley-Blackwell  (3)
  • 1985-1989  (3)
  • 1960-1964
  • 1988  (3)
Collection
Publisher
  • Wiley-Blackwell  (3)
Years
  • 1985-1989  (3)
  • 1960-1964
Year
  • 1
    ISSN: 0570-0833
    Keywords: NMR spectroscopy ; NMR spectroscopy ; Polymers ; Analytical methods ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: NMR spectroscopy is an effective method not only for examining liquid samples but also for characterizing molecular sturcture, order and dynamics in amorphous and ordered solids. Recent developments in the area of solid-state NMR spectroscopy span from model-dependent studies of conventional one-dimensional spectra to the more definitive two-dimensional (2D) spectra which provide more specific information. For example, with 2D-NMR spectroscopy it is possible to determine the orientational distribution functions of molecular segments in drawn polymers and to distinguish different mechanisms of complex molecular motions. Following an introduction to basic NMR spectroscopy, an overview of the current state-of-the-art of 2D methods in solid-state NMR spectroscopy is presented and demonstrated with selected examples.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0570-0833
    Keywords: Surface recognition ; Molecular recognition ; Self-assembly ; Biological membranes ; Membranes ; Polymers ; Micelles ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The Part and the Whole. The principle of self-organization for the creation of functional units is not an invention of modern natural sciences. It was already a basic idea of the ancient philosophies in Asia and Europe: only the mutuality of the parts creates the whole and its ability to function. Translated into the language of chemistry this means: the self-organization of molecules leads to supramolecular systems and is responsible for their functions. Thermotropic and lyotropic liquid crystals are such functional units, formed by self-organization. As highly oriented systems, they exhibit new properties. The importance of lyotropic liquid crystals for the life sciences has been known for a long time. They are a prerequisite for the development of life and the ability of cells to function. In materials sciences this concept of function through organization led to the development of new liquid-crystalline materials. From the point of view of macromolecular chemistry, this review tries to combine these two different fields and especially hopes to stimulate their interaction and joint treatment. To exemplify this, the molecular architecture of polymeric organized systems will be discussed. Polymeric liquid crystals combine the ability to undergo spontaneous self-organization-typical of liquid-crystalline phases-with the polymer-specific property of stabilizing these ordered states. As new materials, polymeric liquid crystals have already been investigated intensively. As model systems for biomembranes as well as for the simulation of biomembrane processes, they so far have been little discussed. The intention of this review article is to show that polymer science is able to contribute to the simulation of cellular processes such as the stabilization of biomembranes, specific surface recognition, or even the “uncorking” of cells. Polymer science, having an old tradition as an inter-disciplinary field, can no longer restrict itself to common plastics. Attempts to reach new horizons have already begun. The borderland between liquid crystals and cells will certainly play an important role. Basic requirements to work in this frontier area between organic chemistry, membrane biology, life science, and materials science will be the delight in scientific adventures as well as the courage to go ahead. The most important prerequisite will be the willingness to cooperate with disciplines which so far have not really accepted each other. From this point of view, this review does not aim at giving defined answers. It wants instead to encourage the scientific venture: too often we cling to painfully acquired knowledge, fearing adventures.
    Additional Material: 78 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0570-0833
    Keywords: NMR spectroscopy ; 13C NMR spectroscopy ; Polymers ; Analytical methods ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Until a few years ago, solid-state nuclear resonance yielded spectra containing broad lines only. Meanwhile, CP/MAS-NMR spectroscopy has provided a method which gives narrow nuclear resonance lines from a solid-state specimen as well. Using this technique, it is now possible to produce spectra of “rare” nuclei (13C, 29Si, 15N etc.) which are resolved in terms of chemical structure. The analytical capabilities of NMR spectroscopy can be applied to the solid state: it may be that it is necessary to identify compounds in the solid state because, for example, a solvent would alter the coordination sphere, or that it is desired to monitor chemical reactions in the solid state, for example the baking of an enamel. Where a substance in the solid state is concerned, high-resolution 13C-NMR spectroscopy provides not only information about the chemical structure, but also about the solid state itself. To mention just a few examples, information on the conformation, crystal structure and molecular dynamics, as well as molecular miscibility is given. This opens up a broad spectrum of applications, from a statement concerning the crystal modification of an active substance in ready-to-use pharmaceutical preparations, e.g. tablets, to the question of whether two polymers are miscible with one another at a molecular level.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...