ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Other Sources  (3)
  • Lunar and Planetary Science and Exploration
  • 2020-2020
  • 2005-2009
  • 1990-1994
  • 1985-1989  (3)
  • 1950-1954
  • 1985  (3)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Of all the planets in the solar system, Venus is the most like our own Earth in size, mass, and distance from the Sun. The motions of our planetary "twin" were known to the ancients, and its apparent changes in shape, similar to the phases of the Moon, were first studied by Galileo more than four centuries ago. In the modern era, it is by far the most visited world in the solar system - more than 20 spacecraft from the Soviet Union and the United States have been sent there since the early 1960's. The clouds of Venus have been probed, the structure and composition of its atmosphere measured, its landscape photographed, and its rocks chemically analyzed by automated landers. Yet, for all our fascination with Venus, we have only a sketchy, general knowledge of the planet's surface. While the other three "terrestrial" worlds - Earth, Mercury, and Mars have long since been mapped, details of the face of Venus are still largely unknown, due to the planet's dense, constant cloud cover. The clouds prevent us from ever photographing the solid surface, even from space, with conventional cameras. Beginning in the early 1960s, scientists on Earth began to counter this problem by using radar waves, which, unlike visible light, are able to penetrate the Venusian clouds and reflect off the solid planet back to Earth. With the help of computer processing, these radar reflections can be turned into pictures of the Venus surface. Earth-based radar imaging is thus extremely valuable. but it also is limited-Venus always shows the same hemisphere to us when it is near enough in its orbit for high-resolution study, so only a fraction of the planet can be explored from Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA-NF-143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-14
    Description: The Moon is the cornerstone of planetary science. Lunar sample studies were fundamental in developing an understanding of the early evolution and continued development of planetary bodies, and have led to major revisions in understanding of processes for the accumulation of planetesimals and the formation of planets. Studies of lunar samples have increased an understanding of impact cratering, meteoroid and micrometeoroid fluxes, the interaction of planetary surfaces with radiations and particles, and even the history of the Sun. The lunar sample research program was especially productive, but by no means have all the important answers been determined; continued study of lunar samples will further illuminate the shadows of our knowledge about the solar system. Further, the treasures returned through the Apollo program provide information that is required for a return to the Moon, beginning with new exploration (Lunar Geoscience Observer (LGO)), followed by intensive study (new sample return missions), and eventually culminating in a lunar base and lunar resource utilization. The few years during and following Apollo were a hectic time for lunar science. Since then, considerable maturation of the science and distinct changes in the mode of operation have developed. Funding (and hence the number of investigators) has naturally declined. Studies have become far more problem-oriented than descriptive. Many sample investigators have shifted their sights away from planetary evolution, for which the Moon holds considerable information, toward processes and materials in the pre-planetary solar nebula, for which the Moon has no direct evidence. Nonetheless, unique scientific opportunities are still supplied by the samples returned from the Apollo and Luna missions and by lunar meteorites. These 382 kg of samples constitute a priceless resource that still has enormous scientific potential. Continued interaction between NASA and the scientific community, especially through the advice of groups such as the Lunar and Planetary Sample Team (LAPST), is essential in maintaining the current level of excellence of the program. LAPST has reviewed its role, the role of the sample research community, and the perceived role of future researchers over the next decade in ensuring the effective use of lunar sample studies in space exploration and exploitation. The review encompasses: (I) lunar sample science; (2) lunar materials applications; (3) lunar sample studies and their relation to future space missions; and (4) lunar sample curation. Plans in all four areas are summarized in this document.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA-CR-176290 , NAS 1.26:176290 , LPI-TR-85-04
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-12-13
    Description: Its purpose is to explain in simple language, including numerous illustrations, the Voyager-2 plans to examine Uranus and its moons, rings, particles, and fields. The Guide will also contain a variety of interesting facts about the Voyager mission, both past and future.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA-CR-188441 , NAS 1.26:188441 , JPD-D-2580 , PD-618-150
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...