ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • American Institute of Physics
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • 2005-2009
  • 1985-1989  (7)
  • 1930-1934
  • 1987  (3)
  • 1985  (4)
  • 1
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Journal of the Acoustical Society of America, 78 (6). pp. 2115-2121.
    Publication Date: 2020-05-11
    Description: The acoustic backscatter of eight well‐curated ferromanganese nodules has been measured in 1 °C seawater at frequencies from 45 to 167 kHz. The nodules have diameters from 37 to 121 mm and are thought to be representative of the Cu–Ni–Co‐rich nodules from the area around 14° 40’ N, 125° 25’ W (DOMES site C). They had been collected in box cores on the Echo 1 expedition and were kept refrigerated and water soaked in air‐tight plastic bags. Acoustic backscatter variations of over 10 dB were observed while the nodule was rotated 10° to 30° about one of its principal axes. The complicated fine structure, as well as the target strength, makes it clear that nodules cannot be modeled as simple spheres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 78 (4). pp. 1348-1355.
    Publication Date: 2020-07-16
    Description: Additional data from sonobuoys and the Deep Sea Drilling Project (DSDP) justify separating sound‐velocity‐depth functions and velocity gradients (in the first layer of soft marine sediments) into some geographic areas and sediment types. Based on sonobuoy and core measurements (where V is sound velocity in km/s, and h is depth in sediments in km), the following data are obtained: continental shelf basins off Sumatra and Java—V=1.484+0.710h−0.085h2; U. S. Atlantic continental rise—V=1.513+0.828h−0.138h2; deep‐sea terrigenous sediments—V=1.519+1.227h−0.473h2; and siliceous sediments of the Bering Sea— V=1.509+0.869h−0.267h2. Selected DSDP data (through leg 74) in similar areas yield: continental terrace silt–clays—V=1.505+0.712h; deep‐sea terrigenous sediments—V=1.510+1.019h; and deep‐sea siliceous sediments—V=1.533+0.761h. Computed velocity gradients from sonobuoy measurements are generally supported by the DSDP gradients. Only DSDP data give the following: hemipelagic sediments—V=1.501+1.151h; deep‐sea calcareous sediments—V=1.541+0.928h; and deep‐sea pelagic clay—V=1.526+1.046h. Where fast sediment accumulation occurs, there has not been enough time to reduce sediment pore spaces under overburden pressure; areas of slow accumulation may have relatively high sediment structural strength. Both cases have lower velocity gradients because higher porosities and consequent lower velocities persist to deeper depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 326 (6111). pp. 373-375.
    Publication Date: 2018-03-02
    Description: Hurricanes and other strong storms can cause important decreases in sea surface temperature by means of vertical mixing within the upper ocean, and by air–sea heat exchange. Here we use satellite-derived infrared images of the western North Atlantic to study sea surface cooling caused by hurricane Gloria (1985). Significant regional variations in sea surface cooling are well correlated with hydrographic conditions. The greatest cooling (up to 5°C) occurred in slope waters north of the Gulf Stream where the seasonal thermocline is shallowest and most compressed; moderate cooling (up to 3 °C) occurred in the open Sargasso Sea where the thermocline is deeper and more diffused; little or no cooling occurred in shallow coastal waters (bottom depth less than 20 m) which were isothermal before the passage of hurricane Gloria. There is a pronounced right-side asymmetry of sea surface cooling with stronger (by a factor of 4) and more extensive (by a factor of 3) cooling found on the right side of the hurricane track. These qualitative results are consistent with the notion that vertical mixing within the upper ocean is the dominant sea surface cooling mechanism of hurricanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-18
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 315 (6016). pp. 216-218.
    Publication Date: 2016-10-26
    Description: Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, δ 13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) δ 13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter δ 13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower P CO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 315 (6014). pp. 21-26.
    Publication Date: 2016-06-10
    Description: The climate record obtained from two long Greenland ice cores reveals several brief climate oscillations during glacial time. The most recent of these oscillations, also found in continental pollen records, has greatest impact in the area under the meteorological influence of the northern Atlantic, but none in the United States. This suggests that these oscillations are caused by fluctuations in the formation rate of deep water in the northern Atlantic. As the present production of deep water in this area is driven by an excess of evaporation over precipitation and continental runoff, atmospheric water transport may be an important element in climate change. Changes in the production rate of deep water in this sector of the ocean may push the climate system from one quasi-stable mode of operation to another.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 328 (6126). pp. 123-126.
    Publication Date: 2016-06-10
    Description: There is now clear evidence that changes in the Earth's climate may be sudden rather than gradual. It is time to put research into the build-up of carbon dioxide in the atmosphere on a better footing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...