ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 60-Hz electric fields  (2)
  • Wiley-Blackwell  (2)
  • Annual Reviews
  • Oxford University Press
  • Periodicals Archive Online (PAO)
  • 2020-2024
  • 1980-1984  (2)
  • 1983  (2)
  • Physics  (2)
Collection
  • Articles  (2)
Publisher
  • Wiley-Blackwell  (2)
  • Annual Reviews
  • Oxford University Press
  • Periodicals Archive Online (PAO)
Years
  • 2020-2024
  • 1980-1984  (2)
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 4 (1983), S. 327-339 
    ISSN: 0197-8462
    Keywords: 60-Hz electric fields ; perinatal exposure ; rat ; visual-evoked response ; central nervous system ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Two independent series of experiments were performed on 114 male Sprague-Dawley derived, albino rat pups, which represented 61 litters in experimental series I and 53 litters in experimental series II. Animals were exposed for 20 h/day from conception to testing (postnatal days 11-20) to a vertical, 65-kV/m, 60-Hz electric field or sham-exposed. Recordings of the visual-evoked response (VER) were obtained using a small silver ball electrode placed epidurally over the visual cortex. Visual stimuli consisted of 10-μS light flashes delivered at 0.2 Hz. Computer-averaged VERs were obtained and power spectral analyses (fast Fourier transform) were performed on the tapered (split cosine-bell window), averaged VERs. The expected age-related changes were clearly evident; however, a detailed analysis of VER component latencies, peak-to-peak amplitude, and power spectra failed to reveal any consistent, statistically significant effect of exposure to 60-Hz electric fields.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 4 (1983), S. 181-191 
    ISSN: 0197-8462
    Keywords: 60-Hz electric fields ; arousal response ; electric field strength ; mice ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal responses based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...