ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Quaternary Science, Wiley, 36(1), pp. 20-28, ISSN: 0267-8179
    Publication Date: 2024-06-21
    Description: Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-07
    Description: CO2 release from thawing permafrost is both a consequence of, and a driver for, global warming, making accurate information on the Arctic carbon cycle essential for climate predictions. Eddy covariance data obtained from Bayelva (Svalbard) in 2015, using well‐established processing and quality control techniques, indicate that most of the annual net CO2 uptake is due to high CO2 flux events in winter that are associated with strong winds and probably relate to technical limitations of the gas analyzer. Emission events may relate to either (unidentified) instrumental limitations or to physical processes such as CO2 advection. Excluding the high winter uptake events yields an annual CO2 budget close to zero; whether or not these events are included can, therefore, have a considerable effect on carbon budget calculations. Further investigation will be crucial to pinpoint the factors causing these high CO2 flux events and to derive scientifically substantiated flux processing standards.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-03
    Description: Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-02
    Description: Bacterial sulfate reduction (SR) is often determined by radiotracer techniques using 35S‐labeled sulfate. In environments featuring simultaneous sulfide oxidation, SR can be underestimated due to re‐oxidation of 35S‐sulfide. Recycling of 35S‐tracer is expected to be high in sediment with low concentrations of pore‐water sulfide and high abundance of giant filamentous sulfur‐oxidizing bacteria (GFSOB). Here, we applied a sulfide‐spiking method, originally developed for water samples, to sediments along a shelf‐slope transect (72, 128, 243, 752 m water depth) traversing the Peruvian oxygen minimum zone. Sediment spiked with unlabeled sulfide prior to 35S‐sulfate injection to prevent radiotracer recycling was compared to unspiked sediment. At stations characterized by low natural sulfide and abundant GFSOB (128 and 243 m), the method revealed 1–3 times higher SR rates in spiked sediment. Spiking had no effect on SR in sediment with high natural sulfide despite presence of GFSOB (72 m). Bioturbated sediment devoid of GFSOB (752 m) showed elevated SR in spiked samples, likely from artificial introduction of sulfidic conditions. Sulfide oxidation rates at the 128 and 243 m station, derived from the difference in SR between spiked and unspiked sediment, approximated rates of dissimilatory nitrate reduction to ammonium by GFSOB. Gross SR contributed considerably to benthic dissolved inorganic carbon fluxes at the three shallowest station, confirming that SR is an important process for benthic carbon respirations within the oxygen minimum zone. We recommend to further explore the spiking method to capture SR in sediment featuring low sulfide concentrations and high sulfur cycling by GFSOB.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Global Biogeochemical Cycles, Wiley, 35, pp. e2020GB006659-e2020GB006659, ISSN: 0886-6236
    Publication Date: 2024-04-22
    Description: Spatial analysis in earth sciences is often based on the concept of spatial autocorrelation, expressed by W. Tobler as the first law of geography: “everything is related to everything else, but near things are more related than distant things." Here, we show that subsurface soil properties in permafrost tundra terrain exhibit tremendous spatial variability. We describe the subsurface variability of soil organic carbon (SOC) and ground ice content from the centimeter to the landscape scale in three typical tundra terrain types common across the Arctic region. At the soil pedon scale, that is, from centimeters to 1–2 m, variability is caused by cryoturbation and affected by tussocks, hummocks and nonsorted circles. At the terrain scale, from meters to tens of meters, variability is caused by different generations of ice‐wedges. Variability at the landscape scale, that is, ranging hundreds of meters, is associated with geomorphic disturbances and catenary shifts. The co‐occurrence and overlap of different processes and landforms creates a spatial structure unique to permafrost environments. The coefficient of variation of SOC at the pedon scale (21%–73%) exceeds that found at terrain (17%–66%) and even landscape scale (24%–67%). Such high values for spatial variation are otherwise found at regional to continental scale. Clearly, permafrost soils do not conform to Tobler's law, but are among the most variable soils on Earth. This needs to be accounted for in mapping and predictions of the permafrost carbon feedbacks through various ecosystem processes. We conclude that scale deserves special attention in permafrost regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-20
    Description: Stable isotopes (δ18O, δD) of wedge ice hold potential to reconstruct past winter climate conditions. Here, we present records of the marine isotope stages (MIS) 3 and 2 including the last Glacial maximum (LGM) from Bol’shoy Lyakhovsky Island (NE Siberia). MIS 3 wedge ice dated from 52 to 40 Kyr b2k varies between −32 and −29‰ in δ18O. Colder LGM conditions are implied by δ18O of −37‰ around 25 Kyr b2k. Similar Deuterium excess values indicate comparable moisture sources during MIS 3 and MIS 2. Regional LGM climate reconstructions depend on the seasonal resolution of the proxies and model simulations. Our wedge-ice record reflects coldest winters during global minima in atmospheric CO2 and sea level. The extreme LGM winter cooling is not represented in model projections of global LGM climate where West Beringia shows noticeably little cooling or even warming in mean annual temperatures compared to the late Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-08
    Description: The increasing demand for metals is pushing forward the progress of deep‐sea mining industry. The abyss between the Clarion and Clipperton Fracture Zones (CCFZ), a region holding a higher concentration of minerals than land deposits, is the most targeted area for the exploration of polymetallic nodules worldwide, which may likely disturb the seafloor across large areas and over many years. Effects from nodule extraction cause acute biodiversity loss of organisms inhabiting sediments and polymetallic nodules. Attention to deep‐sea ecosystems and their services has to be considered before mining starts but the lack of basic scientific knowledge on the methodologies for the ecological surveys of fauna in the context of deep‐sea mining impacts is still scarce. We review the methodology to sample, process and investigate metazoan infauna both inhabiting sediments and nodules dwelling on these polymetallic‐nodule areas. We suggest effective procedures for sampling designs, devices and methods involving gear types, sediment processing, morphological and genetic identification including metabarcoding and proteomic fingerprinting, the assessment of biomass, functional traits, fatty acids, and stable isotope studies within the CCFZ based on both first‐hand experiences and literature. We recommend multi‐ and boxcorers for the quantitative assessments of meio‐ and macrofauna, respectively. The assessment of biodiversity at species level should be focused and/or the combination of morphological with metabarcoding or proteomic fingerprinting techniques. We highlight that biomass, functional traits, and trophic markers may provide critical insights for biodiversity assessments and how statistical modeling facilitates predicting patterns spatially across point‐source data and is essential for conservation management.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-14
    Description: Polar marine ecosystems are particularly vulnerable to the effects of climate change. Warming temperatures, freshening seawater, and disruption to sea-ice formation potentially all have cascading effects on food webs. New approaches are needed to better understand spatiotemporal interactions among biogeochemical processes at the base of Southern Ocean food webs. In marine systems, isoscapes (models of the spatial variation in the stable isotopic composition) of carbon and nitrogen have proven useful in identifying spatial variation in a range of biogeochemical processes, such as nutrient utilization by phytoplankton. Isoscapes provide a baseline for interpreting stable isotope compositions of higher trophic level animals in movement, migration, and diet research. Here, we produce carbon and nitrogen isoscapes across the entire Southern Ocean (〉40°S) using surface particulate organic matter isotope data, collected over the past 50 years. We use Integrated Nested Laplace Approximation-based approaches to predict mean annual isoscapes and four seasonal isoscapes using a suite of environmental data as predictor variables. Clear spatial gradients in δ13C and δ15N values were predicted across the Southern Ocean, consistent with previous statistical and mechanistic views of isotopic variability in this region. We identify strong seasonal variability in both carbon and nitrogen isoscapes, with key implications for the use of static or annual average isoscape baselines in animal studies attempting to document seasonal migratory or foraging behaviors.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-14
    Description: Magmatic activity that accompanied the collision between Arabia and Eurasia at ∼27 Ma, provides unique opportunities for understanding the triggers and magma reservoirs for collisional magmatism and its different styles in magmatic fronts and back-arcs. We present new ages and geochemical-isotopic results for magmatic rocks that formed during the collision between Arabia and Eurasia in NE Iran, which was a back-arc region to the main magmatic arcs of Iran. Our new zircon U-Pb ages indicate that collisional magmatism began at ∼24 Ma in the NE Iran back-arc, although magmatism in this area started in the Late Cretaceous time and continued until the Pleistocene. The collisional igneous rocks are characteristically bimodal, and basaltic-andesitic and dacitic-rhyolitic components show significant isotopic differences; εNd(t) = +4.4 to +7.4 and εHf(t) = +5.4 to +9.5 for mafic rocks and εNd(t) = +0.2 to +8.4 and εHf(t) = +3.4 to +12.3 for silicic rocks. The isotopic values and modeling suggest that fractional crystallization and assimilation-fractional crystallization played important roles in the genesis of felsic rocks in the NE Iran collisional zone. Trace element and isotopic modeling further emphasize that the main triggers of the magmatism in NE Iran comprise a depleted to the enriched mantle and the Cadomian continental crust of Iran. Our results also emphasize the temporal magmatic variations in the NE Iran back-arc from Late Cretaceous to Pleistocene.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-08
    Description: Glacial-isostatic adjustment (GIA) is the key process controlling relative sea-level (RSL) and paleo-topography. The viscoelastic response of the solid Earth is controlled by its viscosity structure. Therefore, the appropriate choice of Earth structure for GIA models is still an important area of research in geodynamics. We construct 18 3D Earth structures that are derived from seismic tomography models and are geodynamically constrained. We consider uncertainties in 3D viscosity structures that arise from variations in the conversion from seismic velocity to temperature variations (factor r) and radial viscosity profiles (RVP). We apply these Earth models to a 3D GIA model, VILMA, to investigate the influence of such structure on RSL predictions. The variabilities in 3D Earth structures and RSL predictions are investigated for globally distributed sites and applied for comparisons with regional 1D models for ice center (North America, Antarctica) and peripheral regions (Central Oregon Coast, San Jorge Gulf). The results from 1D and 3D models reveal substantial influence of lateral viscosity variations on RSL. Depending on time and location, the influence of factor r and/or RVP can be reverse, for example, the same RVP causes lowest RSL in Churchill and largest RSL in Oregon. Regional 1D models representing the structure beneath the ice and 3D models show similar influence of factor r and RVP on RSL prediction. This is not the case for regional 1D models representing the structure beneath peripheral regions indicating the dependence on the 3D Earth structure. The 3D Earth structures of this study are made available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...