ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • American Geophysical Union (AGU)
  • American Meteorological Society (AMS)
  • Annual Reviews
  • Wiley-Blackwell
  • 2005-2009  (2)
  • 1980-1984  (1)
  • 2005  (2)
  • 1980  (1)
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  Geophysical Research Letters, 7 (10). pp. 797-800.
    Publication Date: 2020-07-30
    Description: The rate of reaction of OH with CS2 to form OCS by reaction (1) has been measured through observation of O14CS following 254 nm equation image photolysis of mixtures of H2O2 with 14CS2. The OH concentrations have been monitored through simultaneous measurement in the same cell of either (a) the oxidation of CO to CO2, or (b) the removal of a hydrocarbon such as C3H8 or iso-C4H10. The upper limit for the formation of OCS based on (a) corresponds to a rate constant k1 〈 0.3 × 10−14 cm³ molecule−1 sec−1. Other chemical reactions in the system have led to the formation of both 14CO and 14CO2, indicating the existence of a complex combination of reactions such that the observed O14CS need not have been formed by (1). The rate of reaction (1) is sufficiently slow that it is neither an important atmospheric sink for CS2 nor an important source for atmospheric OCS. The reaction of OH with OCS has not been measured in these experiments, but by analogy with k1 it is probably not an important atmospheric sink for OCS nor an important source of SO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-14
    Description: An analysis of mass (M) and standard length (LS) data for larval, juvenile and adult sprat (Sprattus sprattus; Clupeidae) revealed marked changes in the allometric scaling factor (b in inline image). For sprat 〈44 mm LS, b was 5·0, whereas in larger juveniles and adults, b was c. 3·4 indicating a relatively protracted metamorphic period for this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-31
    Description: Human activities have differentially altered biogeochemical cycling at local, regional and global scales. We propose that a stoichiometric approach, examining the fluxes of multiple elements and the ratio between them, may be a useful tool for better understanding human effects on ecosystem processes and services. The different scale of impacts of the elements carbon, nitrogen and phosphorus and the different nature of their biogeochemical cycles, imply a large variation of their stoichiometric ratios in space and time and thus divergent impacts on biota. In this paper, we examine the effects of anthropogenic perturbations on nutrient ratios in ecosystems in two examples and one case study. Altered stoichiometry in agricultural systems (example 1) can affect not only crop yield and quality but also the interactions between plants and their pollinators, pests and pathogens. Human activities have also altered stoichiometry in coastal ecosystems (example 2). Increased N loading has especially lead to increased N:P and reduced Si:N ratios, with detrimental effects on ecosystem services derived from coastal pelagic food webs, such as fish yield and water quality. The terrestrial–aquatic linkage in stoichiometric alterations is illustrated with a case study, the Mississippi River watershed, where anthropogenic activities have caused stoichiometric changes that have propagated through the watershed into the northern Gulf of Mexico. Coupled with altered stoichiometric nutrient inputs are the inherent differences in variation and sensitivity of different ecosystems to anthropogenic disturbance. Furthermore, the connections among the components of a watershed may result in downstream cascades of disrupted functioning. Applying a multiple element perspective to understanding and addressing societal needs is a new direction for both ecological stoichiometry and sustainability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...