ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (5)
  • Elsevier  (4)
  • Springer-Verlag  (1)
  • Annual Reviews
  • 2005-2009  (5)
  • 1990-1994
  • 1980-1984
  • 2005  (5)
  • 1980
Collection
Publisher
Years
  • 2005-2009  (5)
  • 1990-1994
  • 1980-1984
Year
  • 1
    Publication Date: 2017-04-04
    Description: The strike-slip Pernicana fault system (PFS) was activated along the eastern flank of Mt. Etna during an earthquake in September 2002 and, one month later, during the eruption of the NE Rift. Structural and volcanological data suggest that the PFS was activated as a result of the slide of the NE flank of Etna. This activation produced surface fracturing on walls and on paved and unpaved roads. The segments of the PFS, arranged in a right stepping en échelon configuration, show (a) an inverse proportion between length and frequency; (b) fractal behavior over scales of 10−2 –101 m, between their length, overstep and overlap; (c) consistent strike with regard to their fault array; and (d) a progressive eastward decrease in the displacement, along the smallest faults. The consistent geometric and kinematic features of the PFS, related to the sector collapse of Etna, are similar to those of faults in strike-slip settings.
    Description: Published
    Description: 343-355
    Description: partially_open
    Keywords: Active faulting ; Strike-slip faults ; Fractal behavior ; Volcano collapse ; Mt. Etna ; Pernicana fault system ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1265348 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: This study presents a detailed analysis and interpretation of the seismicity that occurred on July 2-7 and August 22, 2000, during a ground uplift episode which started on March 2000 at Solfatara crater, Campi Flegrei. Earthquakes are located using a probabilistic grid-search procedure acting on a 3-D heterogeneous earth structure. The mainshock of the July swarm depicts a spectrum characterized by a few narrow peaks spanning the 1^5-Hz frequency band. For this event, we hypothesize a direct involvement of magmatic fluids in the source process. Conversely, the spectra of the August events are typical of shear failure. For these latter events, we evaluate the source properties from P-and Swave displacement spectra. Results for the most energetic shocks (Md around 2) yield a source radius in the order of 100 m and stress drop around 10 bars, in agreement with most of the earthquakes that occurred during the 1982-1984 bradyseismic crises. For the August swarm we identify two clusters of similar earthquakes. Application of highresolution relative location techniques to these events allows for the recognition of two parallel alignments trending NE^SW. The relationship among source dimension and relative location evidences overlapping of sources. This may be interpreted in terms of either a heterogeneous stress field or a lubrication process acting over the fault surface. For a selected subset of the August events, we also analyze the splitting of the shear waves: results are indicative of wave propagation through a densely fractured medium characterized by a distribution of cracks oriented NE-SW. The pattern of faulting suggested by relative locations and shear-wave splitting is not consistent with the surface trace of NW^SE striking faults. However, a detailed mesostructural analysis carried out over the Solfatara area indicated the occurrence of two main crack systems striking NW-SE and NE-SW. This latter system shows a strike consistent with that derived from seismic evidence. Results from a stress analysis of the crack systems indicate that a fluid overpressure within the NW-SE-striking faults is able to form NE-SW cracks. We found that the pressure of fluids Pf required to activate the NW-SE faults is less than cHmin, while the Pf value required to open the NE-SW cracks is higher than cHmax. Our main conclusions are: (a) the Solfatara area is affected by two orthogonal fracture systems, and the fluid pathway during the 2000 crisis mainly occurred along the NNE-SSW/NE-SW-striking crack system; (b) the July seismicity is associated to the upward migration of a pressure front triggered by an excess of fluid pressure from a small-size magmatic intrusion; conversely, the August events are associated to the brittle readjustment of the inflated system occurring along some lubricated structures.
    Description: Published
    Description: 229-246
    Description: partially_open
    Keywords: Seismicity ; Hydrothermal fuids ; Fuid pressure ; Faults ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 992189 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.
    Description: - Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).
    Description: Published
    Description: 283– 297
    Description: partially_open
    Keywords: caldera ; elliptic Fourier functions ; geomorphology ; self-potential ; Misti volcano ; Peru ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 756700 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene 376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000-1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2-3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the 〉60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas. Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.
    Description: Published
    Description: 557-589
    Description: partially_open
    Keywords: Andes ; Ubinas ; Radiometric dating ; Geochemistry ; Fractional crystallization ; Mafic magma ; Hazards ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 2426674 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Large-scale flank instability on Mount Etna is associated with a distinct set of faults radiating generally from the summit area and restricted to the volcanic edifice itself. New observations and mapping of very recent and continuing deformation along these faults and related structures have been analysed in combination with published information, including recent seismic and eruption data, enabling the faults to be placed in three groups. Two of these, the Pernicana fault system (PFS) and the Ragalna fault system (RFS) bound, respectively, the northern and south-western margins of instability. Their activity responds to cycles of magma pressure associated with flank eruptions, together with subsequent deflation as gravity dominates. These cycles may operate at different depths, with the RFS bordering deep-seated instability. Their positions appear governed by the contact, in the substrate of the volcano, between relatively weak early Quaternary clays and stronger rocks of the Apennine–Maghrebian Chain that rise towards the north and west in the subsurface, buttressing the edifice in these directions. The unstable mass to the un-buttressed south and east is thus defined by its weak substrate and displays structures similar to those produced in model experiments. The third fault group, the Mascaluci–-Trecastagni fault system, borders a rather faster-moving zone of instability in the eastern part of the large unstable mass, outlining one element in a nested pattern in map view. Low-angle detachments below the unstable zones are thought to occur at different levels above a deep and laterally extensive detachment associated with the RFS, producing a nested pattern in section as well. This is illustrated by the PFS where the long-recognised western half of the fault borders a fast moving zone of instability riding above a detachment that daylights as a thrusted deformation front marked by recurring landsliding at an approximate mid-slope position on the volcano. Downslope, the newly recognised eastern extension of the PFS, exhibiting slip-rates an-order-of-magnitude lower than the western segment, is thought to border a deeper slow-moving detachment that daylights offshore. Windows of deformed sub-Etnean clays at anomalously high altitudes may indicate where similar detachments, no longer mechanically favoured and now inactive, have daylighted. As a result, the edifice can be considered, overall, as consisting of multiple unstable areas, nested in plan view and with basal detachments occurring at different levels in section. This model of edifice behaviour is regarded as an evolving one, with detachments waxing and waning in their activity as flank movement progresses.
    Description: Published
    Description: 137-153
    Description: partially_open
    Keywords: Mount Etna ; instability; flank faults ; volcano collapse models ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1912833 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...