ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • American Association for the Advancement of Science (AAAS)
  • American Meteorological Society
  • American Physical Society (APS)
  • Blackwell Publishing Ltd
  • Springer Nature
  • 2010-2014  (4)
  • 2000-2004
  • 1995-1999  (3)
  • 1980-1984  (1)
  • 1955-1959
  • 1945-1949
  • 1935-1939
  • 2011  (4)
  • 1997  (3)
  • 1984  (1)
  • 1980
Collection
Years
  • 2010-2014  (4)
  • 2000-2004
  • 1995-1999  (3)
  • 1980-1984  (1)
  • 1955-1959
  • +
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 224 (4652). pp. 990-992.
    Publication Date: 2019-03-19
    Description: Study of Nautilus belauensis i its natural habitat in Palau, West Caroline Islands, shows that growth is slow (0.1 millimeter of shell per day on the average) and decreases as maturity is approached and that individuals may live at least 4 years beyond maturity. Age estimates for seven animals marked and recaptured between 45 and 355 days after release range from 14.5 to 17.2 years. These data indicate that the life-span of Nautilus may exceed 20 years and that its life strategy is very different from that of other living cephalopods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward-flowing Atlantic Water is the major means of heat advection toward the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal-scale record of ocean temperature variations during the past 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early–21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic amplification of global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Reviews Clinical Oncology, 8 (11). pp. 677-688.
    Publication Date: 2020-06-24
    Description: Cell-based therapies, such as adoptive immunotherapy and stem-cell therapy, have received considerable attention as novel therapeutics in oncological research and clinical practice. The development of effective therapeutic strategies using tumor-targeted cells requires the ability to determine in vivo the location, distribution, and long-term viability of the therapeutic cell populations as well as their biological fate with respect to cell activation and differentiation. In conjunction with various noninvasive imaging modalities, cell-labeling methods, such as exogenous labeling or transfection with a reporter gene, allow visualization of labeled cells in vivo in real time, as well as monitoring and quantifying cell accumulation and function. Such cell-tracking methods also have an important role in basic cancer research, where they serve to elucidate novel biological mechanisms. In this Review, we describe the basic principles of cell-tracking methods, explain various approaches to cell tracking, and highlight recent examples for the application of such methods in animals and humans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-08
    Description: Kessler et al. (Reports, 21 January 2011, p. 312) reported that methane released from the 2010 Deepwater Horizon blowout, approximately 40% of the total hydrocarbon discharge, was consumed quantitatively by methanotrophic bacteria in Gulf of Mexico deep waters over a 4-month period. We find the evidence explicitly linking observed oxygen anomalies to methane consumption ambiguous and extension of these observations to hydrate-derived methane climate forcing premature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Monthly Weather Review, 125 (5). pp. 819-830.
    Publication Date: 2020-06-30
    Description: In this study, the impact of oceanic data assimilation on ENSO simulations and predictions is investigated. The authors’ main objective is to compare the impact of the assimilation of sea level observations and three-dimensional temperature measurements relative to each other. Three experiments were performed. In a control run the ocean model was forced with observed winds only, and in two assimilation runs three-dimensional temperatures and sea levels were assimilated one by one. The root-mean-square differences between the model solution and observations were computed and heat content anomalies of the upper 275 m compared to each other. Three ensembles of ENSO forecasts were performed additionally to investigate the impact of data assimilation on ENSO predictions. In a control ensemble a hybrid coupled ocean–atmosphere model was initialized with observed winds only, while either three-dimensional temperatures or sea level data were assimilated during the initialization phase in two additional forecast ensembles. The predicted sea surface temperature anomalies were averaged over the eastern equatorial Pacific and compared to observations. Two different objective skill measures were computed to evaluate the impact of data assimilation on ENSO forecasts. The authors’ experiments indicate that sea level observations contain useful information and that this information can be inserted successfully into an oceanic general circulation model. It is inferred from the forecast ensembles that the benefit of sea level and temperature assimilation is comparable. However, the positive impact of sea level assimilation could be shown more clearly when the forecasted temperature differences rather than the temperature anomalies themselves were compared with observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 276 (5320). p. 1790.
    Publication Date: 2021-04-15
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Monthly Weather Review, 125 . pp. 703-720.
    Publication Date: 2020-06-30
    Description: In this paper the performance of the global coupled general circulation model (CGCM) ECHO-2, which was integrated for 10 years without the application of flux correction, is described. Although the integration is rather short, strong and weak points of this CGCM can be clearly identified, especially in view of the model's performance of the annual cycle in the tropical Pacific. The latter is simulated with more success relative to the earlier version, ECHO-I. A better representation of the low-level stratus clouds in the atmosphere model associated with a reduction in the shortwave radiative flux at the air-sea interface improved the coupled model's performance in the southeastern tropical oceans, with a strongly reduced warm bias in these regions. Modifications in the atmospheric convection scheme also eliminated the AGCM's tendency to simulate a double ITCZ, and this behavior is maintained in the CGCM simulation. Finally, a new numerical scheme for active tracer advection in the ocean model strongly reduced the numerical mixing, which seems to enhance considerably the level of interannual variability in the equatorial Pacific. One weak point is an overall cold bias in the Tropics and midlatitudes, which typically amounts to 1°C in open ocean regions. Another weak point is the still too strong equatorial cold tongue, which penetrates too far into the western equatorial Pacific. Although this model deficiency is not as pronounced as in ECHO-1, the too strong cold tongue reduces the level of interannual rainfall variability in the western and central equatorial Pacific. Finally, the interannual fluctuations in equatorial Pacific sea surface temperatures (SSTs) are too equatorially trapped, a problem that is also found in ocean-only simulations. Overall, however, the authors believe that the ECHO-2 CGCM has been considerably improved relative to ECHO-1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-06
    Description: A threat of irreversible damage should prompt action to mitigate climate change, according to the United Nations Framework Convention on Climate Change, which serves as a basis for international climate policy. CO2-induced climate change is known to be largely irreversible on timescales of many centuries1, as simulated global mean temperature remains approximately constant for such periods following a complete cessation of carbon dioxide emissions while thermosteric sea level continues to rise1,2,3,4,5,6. Here we use simulations with the Canadian Earth System Model to show that ongoing regional changes in temperature and precipitation are significant, following a complete cessation of carbon dioxide emissions in 2100, despite almost constant global mean temperatures. Moreover, our projections show warming at intermediate depths in the Southern Ocean that is many times larger by the year 3000 than that realized in 2100. We suggest that a warming of the intermediate-depth ocean around Antarctica at the scale simulated for the year 3000 could lead to the collapse of the West Antarctic Ice Sheet, which would be associated with a rise in sea level of several metres2,7,8.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...