ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (14,997)
  • 2025-2025
  • 2015-2019  (14,953)
  • 1975-1979  (44)
  • 1970-1974
  • 2017  (14,953)
  • 1975  (44)
Collection
Years
  • 2025-2025
  • 2015-2019  (14,953)
  • 1975-1979  (44)
  • 1970-1974
Year
  • 1
    Publication Date: 2017-08-30
    Description: Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of time scales. On sub-seasonal time scales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from single-pass radar interferometric data acquired by the TanDEM-X satellite (12 m resolution). The high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km2) allow us to track volume losses as drivers such as the available energy change during summer in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 cm/day) despite the ample available energy, indicating the widespread presence of an insulating snow or debris veneer. Later in summer, height losses generally increase (around 3 cm/day), but they do so in distinct ways. For many slumps, mass wasting tracks the available energy, a temporal pattern that is also observed at coastal yedoma cliffs on the Bykovsky Peninsula, Russia. However, the other two common temporal trajectories are asynchronous with the available energy, as they track strong precipitation events or show a sudden speed-up in late August, respectively. The observed temporal patterns are poorly related to slump characteristics like the slump area. The contrasting temporal behaviour of nearby thaw slumps highlights the importance of complex local and temporally varying controls on mass wasting.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-06
    Description: A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs indicating that phytoplankton may be an important source for marine OVOCs in the South China and Sulu Seas. Humic and protein like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The atmospheric OVOC mixing ratios were relative high compared with literature values, suggesting the coastal region of North Borneo as a local hot spot for atmospheric OVOCs. The flux of atmospheric OVOCs was largely into the ocean for all 5 gases, with a few important exceptions near the coast of Borneo. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the local measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Geoscientific Model Development, Copernicus, 11, pp. 753-769
    Publication Date: 2018-03-28
    Description: The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends. The Extrapolar SWIFT model employs a repro-modelling approach, where algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equations system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24  h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, local ozone column, mixing ratio of ozone and of the ozone depleting families (Cly, Bry, NOy and HOy). We will show that these 9 variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading). For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10 year simulation, the ozone layer, simulated by SWIFT, shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30–100 terms. Nowadays, computers can calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3The Cryosphere, Copernicus, 11(5), pp. 2383-2391
    Publication Date: 2017-10-24
    Description: Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-19
    Description: Climate trends in the Antarctic region remain poorly characterized, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O) composites and temperature reconstructions since 0 CE, binned at 5- and 10-year resolution, for seven climatically distinct regions covering the Antarctic continent. Following earlier work of the Antarctica2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica and the whole continent. We use three methods for our temperature reconstructions: (i) a temperature scaling based on the δ18O–temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-Interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data, (ii) a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and (iii) a composite-plus-scaling approach used in a previous continent-scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0 to 1900 CE, we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval occurs from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the Antarctic Peninsula regions, and these trends are robust across the distribution of records that contribute to the unweighted isotopic composites and also significant in the weighted temperature reconstructions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of natural variability over the last 2000 years. However, projected warming of the Antarctic continent during the 21st century may soon see significant and unusual warming develop across other parts of the Antarctic continent. The extended Antarctica2k ice core isotope database developed by this working group opens up many avenues for developing a deeper understanding of the response of Antarctic climate to natural and anthropogenic climate forcings. The first long-term quantification of regional climate in Antarctica presented herein is a basis for data–model comparison and assessments of past, present and future driving factors of Antarctic climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017
    Description: 〈b〉Friedrich Robert Helmert, founder of modern geodesy, on the occasion of the centenary of his death〈/b〉〈br〉 Johannes Ihde and Andreas Reinhold〈br〉 Hist. Geo Space. Sci., 8, 79-95, https://doi.org/10.5194/hgss-8-79-2017, 2017〈br〉 Friedrich Robert Helmert died in Potsdam in 1917. He was, for over 30 years, director of the Royal Prussian Geodetic Institute and of the Central Bureau of the Internationale Erdmessung, today's IAG. He dedicated his life and his scientific career to the field of geodesy. His teachings on theoretical and physical geodesy were incorporated into university curricula around the world and hence into international endeavours to measure planet Earth.
    Print ISSN: 2190-5010
    Electronic ISSN: 2190-5029
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017
    Description: 〈b〉Scientific Drilling at Lake Tanganyika, Africa: A Transformative Record for Understanding Evolution in Isolation and the Biological History of the African Continent, University of Basel, 6–8 June 2016〈/b〉〈br〉 Andrew S. Cohen and Walter Salzburger〈br〉 Sci. Dril., 22, 43-48, https://doi.org/10.5194/sd-22-43-2017, 2017〈br〉 A workshop was held in Basel, Switzerland, to discuss the scientific opportunities for evolutionary biology, paleobiology and paleoecology of a drilling project at Lake Tanganyika, one of the oldest and most biodiverse lakes on Earth. A record of the numerous endemic organisms collected from the lake coupling body fossils, environmental history and potentially aDNA or ancient protein records would be transformative for understanding evolution in isolation and the biogeographic history of Africa.
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017
    Description: 〈b〉Flow intake control using dry-weather forecast〈/b〉〈br〉 Otto Icke, Kim van Schagen, Christian Huising, Jasper Wuister, Edward van Dijk, and Arjan Budding〈br〉 Drink. Water Eng. Sci., 10, 69-74, https://doi.org/10.5194/dwes-10-69-2017, 2017〈br〉 Flow intake based on predictive control using dry-weather flow and rainfall predictions offers reduced peak discharges on the waste water treatment plants. This results in a better performance of the waste water treatment plant and particularly the utilisation of the post-treatment phase. Results at waste water treatment plant Bennekom show that about 50 % of bypass volume of the post-treatment phase can be prevented with operational predictive control. This improves the surface water quality.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of The Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017
    Description: 〈b〉Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization〈/b〉〈br〉 Céline Assmann, Amanda Scott, and Dondra Biller〈br〉 Drink. Water Eng. Sci., 10, 61-68, https://doi.org/10.5194/dwes-10-61-2017, 2017〈br〉 TOC (total organics carbon) analysis, as a laboratory and online technology, offers new perspectives to organic measurements in waters and waste water, supplementing regulatory oxygen demand tests. TOC monitoring, implemented as a tool to make informative and rapid treatment decisions, becomes a useful process control parameter. This paper discusses the various technologies available and details how three municipal plants gained insights into their processes and saved on their spending with TOC.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of The Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017
    Description: 〈b〉Fifteen years of the Chinese Continental Scientific Drilling Program〈/b〉〈br〉 Zhiqin Xu, Jingsui Yang, Chengshan Wang, Zhisheng An, Haibing Li, Qin Wang, and Dechen Su〈br〉 Sci. Dril., 22, 1-18, https://doi.org/10.5194/sd-22-1-2017, 2017〈br〉 The 5158 m deep borehole of the Chinese Continental Scientific Drilling (CCSD) Project in the Sulu ultrahigh-pressure metamorphic terrain marked the starting point of the CCSD Program. Since then, several continental scientific drilling projects were conducted with funding of the Chinese government and partially with support of ICDP, resulting in a total drilling depth of more than 35 000 m. This paper reviews the history and major progress of the CCSD Program in the past 15 years.
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...