ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismic instruments  (1)
  • Oxford University Press  (1)
  • Public Library of Science
  • 2015-2019  (1)
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • 1945-1949
  • 2018  (1)
  • 1973
Collection
Publisher
  • Oxford University Press  (1)
  • Public Library of Science
Years
  • 2015-2019  (1)
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • 1945-1949
Year
  • 2018  (1)
  • 1973
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 1072–1087, doi:10.1093/gji/ggy203.
    Description: An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. In particular, core questions in earthquake science can be addressed once these properties of small earthquakes are well resolved. However, these parameters of small earthquakes are poorly understood, often limited by available data sets and methodologies. The Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma deployed ∼350 three-component nodal stations within 40 km2 for a month, offering an unprecedented opportunity to test new methodologies for resolving small earthquake finite source properties in high resolution. In this study, we demonstrate the power of the nodal data set to resolve the variations in the seismic wavefield over the focal sphere due to the finite source attributes of an M2 earthquake within the array. The dense coverage allows us to tightly constrain rupture area using the second moment method even for such a small earthquake. The M2 earthquake was a strike-slip event and unilaterally propagated towards the surface at 90 per cent local S-wave speed (2.93 km s−1). The earthquake lasted ∼0.019 s and ruptured Lc ∼70 m and Wc ∼45 m. With the resolved rupture area, the stress-drop of the earthquake is estimated as 7.3 MPa for Mw 2.3. We demonstrate that the maximum and minimum bounds on rupture area are within a factor of two, much lower than typical stress-drop uncertainty, despite a suboptimal station distribution. The rupture properties suggest that there is little difference between the M2 Oklahoma earthquake and typical large earthquakes. The new three-component nodal systems have great potential for improving the resolution of studies of earthquake source properties.
    Description: WF is currently supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. JM was partially supported by SCEC grant #17177 at Woods Hole Oceanographic Institution. This research was supported by the Southern California Earthquake Center (Contribution No. 8014). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038.
    Keywords: Inverse theory ; Waveform inversion ; Body waves ; Earthquake dynamics ; Earthquake source observations ; Seismic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...