ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics
  • 1965-1969  (6)
  • 1950-1954
  • 1968  (6)
  • 1
    Publication Date: 2019-08-14
    Description: An investigation has been conducted at Mach numbers from 2.30 to 4.63 to determine the static aerodynamic characteristics of several configurations designed for flight at hypersonic Mach numbers. Two all-wing and three wing-body configurations were tested through an angle-of-attack range from about -4 degrees to 33 degrees and an angle-of-sideslip range from about -4 degrees to 8 degrees at a Reynolds number of 3 times 10 (sup 6) per foot (9.84 times 10 (sup 6) per meter). The results of the investigation indicated that the wing-body configurations produced higher values of maximum lift-drag ratio than those produced by the all-wing models. The high wing-body configurations tend to have a self-trimming capability as opposed to that for the low wing-body configurations. Each of the configurations produced a positive dihedral effect that increased with increasing angle of attack and decreased with increasing Mach number. The high wing-body models produced decreasing values of directional stability with increase in angle of attack, whereas the low wing-body models provided increasing values of directional stability with increase in angle of attack.
    Keywords: Aerodynamics
    Type: NASA-TM-X-1601
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: A wind-tunnel investigation has been conducted in the Langley High-Speed 7- by 10-Foot Tunnel to determine the buffet and static aerodynamic characteristics of a systematic wing series at Mach numbers ranging from 0.23 to 0.94. The results have indicated that for a given Mach number, the wings which display superior aerodynamic efficiency characteristics generally display the highest buffet free lift coefficient. The characteristics exhibited by the wings which were considered have indicated that correlations can be made between the onset of buffet and selected divergences in the static aerodynamic characteristics. Axial force has been found to be the most sensitive static component to the onset of buffeting.
    Keywords: Aerodynamics
    Type: LWP-537 , F68-0161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Inflation, drag, and stability characteristics of a 54.5 -foot nominal-diameter (16.6-meter) modified ringsail parachute deployed in the wake of a 15-foot-diameter (4.6-meter) spacecraft traveling at a Mach number of 1.6 and a dynamic pressure equal to 11.6 psf (555 N/m(exp 2)) were obtained from the third balloon-launched flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated rapidly to a full condition, partially collapsed, and reinflated to a stable configuration. After reinflation, an average drag coefficient near 0.6 based on nominal surface area was obtained. During descent, an aerodynamic trim angle was observed in a plane near several torn sails. Amplitude of the trim was approximately 15 degrees and oscillation about trim was less than 11 degrees.
    Keywords: Aerodynamics
    Type: L-984
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Inflation and drag characteristics of a 54.4-foot (16.6 meter) nominal-diameter cross parachute, deployed at a Mach number of 1.65 and a dynamic pressure of 12.68 lb/sq f t (607.1 N/m(exp2)), were obtained from the fourth balloon-launched flight test of the Planetary Entry Parachute Program (PEPP). After deployment, the parachute quickly inflated to a full condition, partially collapsed, and then gradually reinflated while undergoing rapid oscillations between over-inflation and under-inflation. The oscillations began while the parachute was still at supersonic speeds and continued to low subsonic speeds well below an altitude of 90,000 feet (27.4 km). These canopy instabilities produced large cyclic variations in the parachute's drag coefficient. The average value of drag coefficient was about 0.8 to 0.9 at subsonic speeds and slightly lower at supersonic speeds. These drag coefficient values were based on the actual fabric surface area of the parachute canopy. The parachute sustained minor damage consisting of two canopy tears and abrasions and tears on the riser line. It is believed that this damage did not produce a significant change in the performance of the parachute.
    Keywords: Aerodynamics
    Type: L-985
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA Supersonic Planetary Entry Decelerator (SPED-I) Program. The test parachute was deployed from an instrumented payload by means of a deployment mortar when the payload was at an altitude of 158,500 feet (48.2 kilometers), a Mach number of 2.72, and a free-stream dynamic pressure of 9.7 pounds per foot(exp 2) (465 newtons per meter(exp 2)). Suspension line stretch occurred 0.46 second after mortar firing and the resulting snatch force loading was -8.lg. The maximum acceleration experienced by the payload due to parachute opening was -27.2g at 0.50 second after the snatch force peak for a total elapsed time from mortar firing of 0.96 second. Canopy-shape variations occurred during the higher Mach number portion of the flight test (M greater than 1.4) and the payload was subjected to large amplitude oscillatory loads. A calculated average nominal axial-force coefficient ranged from about 0.25 immediately after the first canopy opening to about 0.50 as the canopy attained a steady inflated shape. One gore of the test parachute was damaged when the deployment bag with mortar lid passed through it from behind approximately 2 seconds after deployment was initiated. Although the canopy damage caused by the deployment bag penetration had no apparent effect on the functional capability of the test parachute, it may have affected parachute performance since the average effective drag coefficient of 0.48 was 9 percent less than that of a previously tested parachute of the same configuration.
    Keywords: Aerodynamics
    Type: L-1006
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Inflation and drag characteristics of a 64.7-foot (19.7-meter) nominal-diameter disk-gap-band parachute deployed at a Mach number of 1.59 and a dynamic pressure of 11.6 psf (555 newtons per m(exp 2)) were obtained from the second balloon-launched flight test of the Planetary Entry Parachute Program. In addition, parachute stability characteristics during the subsonic descent portion of the test are presented. After deployment, the parachute rapidly inflated to a full condition, partially collapsed, and then reinflated to a stable configuration. After reinflation, an average drag coefficient of about 0.55 based on nominal surface area was obtained. The parachute exhibited good stability characteristics during descent. The only major damage to the parachute during the test was the tearing of two canopy panels; a loss of less than 0.5 percent of nominal surface area resulted.
    Keywords: Aerodynamics
    Type: L-983
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...