ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics
  • 1965-1969  (8)
  • 1950-1954
  • 1967  (8)
  • 1
    Publication Date: 2004-12-03
    Description: The purpose of this paper is to present results of a system analysis and operational evaluation of a captive airfoil balloon system. The system was used operationally in support of an Aeropalynologic Survey Project at NASA Wallops Island, Virginia, during the summer of 1966.
    Keywords: Aerodynamics
    Type: Proceedings: AFCRL Tethered Balloon Workshop, 1967; 145-162; AFCRL-68-0097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: A theoretical analysis of the propagation characteristics of a finite amplitude pressure wave is presented. The analysis attempts to study the contribution of entropy-producing regions to the mechanism of aerodynamic noise generation. It results in a nonlinear convective wave equation in terms of entropy and a thermodynamic 'J' function. A direct analogy between the derived governing equation and those used in classical literature is obtained. An idealization of the processes considered permits the uncoupling of the equations of motion with a consequent construction of an acoustic analogy treating shock wave emission of finite amplitude acoustic waves. An engineering approach is reflected in the concept of an extended plug nozzle whose function is to facilitate aerodynamic noise attenuation by modifying the entropy-producing regions.
    Keywords: Aerodynamics
    Type: NASA-CR-736
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: An analytical study has been made to investigate the relationship between the magnitude of the applied spin recovery moment and the ensuing number of turns made during recovery from a developed spin with a view toward determining how to interpolate or extrapolate spin recovery results with regard to determining the amount of control required for a satisfactory recovery. Five configurations were used which are considered to be representative of modern airplanes: a delta-wing fighter, a stub-wing research vehicle, a boostglide configuration, a supersonic trainer, and a sweptback-wing fighter. The results obtained indicate that there is a direct relationship between the magnitude of the applied spin recovery moments and the ensuing number of recovery turns made and that this relationship can be expressed in either simple multiplicative or exponential form. Either type of relationship was adequate for interpolating or extrapolating to predict turns required for recovery with satisfactory accuracy for configurations having relatively steady recovery motions. Any two recoveries from the same developed spin condition can be used as a basis for the predicted results provided these recoveries are obtained with the same ratio of recovery control deflections. No such predictive method can be expected to give satisfactory results for oscillatory recoveries.
    Keywords: Aerodynamics
    Type: NASA-TN-D-4077
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: The basic objective of this thesis is to provide a practical method of computing the aerodynamic characteristics of slender finned vehicles such as sounding rockets, high speed bombs, and guided missiles. The aerodynamic characteristics considered are the normal force coefficient derivative, c(sub N(sub alpha)); center of pressure, bar-X; roll forcing moment coefficient derivative, c(sub l(sub delta)); roll damping moment coefficient derivative, c(sub l(sub p)); pitch damping moment coefficient derivative, c(sub mq); and the drag coefficient, c (sub D). Equations are determined for both subsonic and supersonic flow. No attempts is made to analyze the transonic region. The general configuration to which the relations are applicable is a slender axisymmetric body having three or four fins.
    Keywords: Aerodynamics
    Type: NASA/TM-2001-209983 , NAS 1.15:209983
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A 30-foot (9.1 meter) nominal-diameter disk-gap-band parachute (reference area 707 sq ft (65.7 m(exp 2)) was flight tested with a 200-pound (90.7 kg) instrumented payload as part of the NASA Planetary Entry Parachute Program. A deployment mortar ejected the test parachute when the payload was at a Mach number of 1.56 and a dynamic pressure of 11.4 lb/sq ft (546 newtons per m 2 ) at an altitude of 127,500 feet (38.86 km). The parachute reached suspension line stretch in 0.37 second resulting in a snatch force loading of 1270 pounds (5650 N). Canopy inflation began 0.10 second after line stretch. A delay in the opening process occurred and was apparently due to a momentary interference of the glass-fiber shroud used in packing the parachute bag in the mortar. Continuous canopy inflation began 0.73 second after initiation of deployment and 0.21 second later full inflation was attained for a total elapsed time from mortar fire of 0.94 second. The maximum opening load of 3915 pounds (17,400 newtons) occurred at the time the canopy was first fully opened. The parachute exhibited an average drag coefficient of 0.52 during the deceleration period and pitch-yaw oscillations of the canopy were less than 5 degrees. During the steady-state descent portion of the test period, the average effective drag coefficient was about 0.47 (based on vertical descent velocity and total system weight).
    Keywords: Aerodynamics
    Type: L-968
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A ringsail parachute, which had a nominal diameter of 40 feet (12.2 meters) and reference area of 1256 square feet (117 m(exp 2)) and was modified to provide a total geometric porosity of 15 percent of the reference area, was flight tested as part of the rocket launch portion of the NASA Planetary Entry Parachute Program. The payload for the flight test was an instrumented capsule from which the test parachute was ejected by a deployment mortar when the system was at a Mach number of 1.64 and a dynamic pressure of 9.1 pounds per square foot (43.6 newtons per m(exp 2)). The parachute deployed to suspension line stretch in 0.45 second with a resulting snatch force of 1620 pounds (7200 newtons). Canopy inflation began 0.07 second later and the parachute projected area increased slowly to a maximum of 20 percent of that expected for full inflation. During this test, the suspension lines twisted, primarily because the partially inflated canopy could not restrict the twisting to the attachment bridle and risers. This twisting of the suspension lines hampered canopy inflation at a time when velocity and dynamic-pressure conditions were more favorable.
    Keywords: Aerodynamics
    Type: L-981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Inflation, drag, and stability characteristics of an 85.3-foot (26-meter) nominal diameter ringsail parachute deployed at a Mach number of 1.15 and at an altitude of 132,600 feet (40.42 kilometers) were obtained from the first flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated to the reefed condition. However, the canopy was unstable and produced low drag in the reefed condition. Upon disreefing and opening to full inflation, a slight instability in the canopy mouth was observed initially. After a short time, the fluctuations diminished and a stable configuration was attained. Results indicate a loss in drag during the fluctuation period prior to stable inflation. During descent, stability characteristics of the system were such that the average pitch-yaw angle from the local vertical was less than 10 degrees. Rolling motion between the payload and parachute canopy quickly damped to small amplitude.
    Keywords: Aerodynamics
    Type: L-946
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A 31.2-foot (9.51 meter) nominal diameter (reference area 764 ft(exp 2) (71.0 m(exp 2)) ringsail parachute modified to provide 15-percent geometric porosity was flight tested while attached to a 201-pound mass (91.2 kilogram) instrumented payload as part of the rocket launch portion of the NASA Planetary Entry Parachute Program (PEPP). The parachute deployment was initiated by the firing of a mortar at a Mach number of 1.39 and a dynamic pressure of 11.0 lb/ft(exp 2) (527 newtons/m(exp 2)) at an altitude of 122,500 feet (37.3 kilometers). The parachute deployed to suspension-line stretch (snatch force) in 0.35 second, and 0.12 second later the drag force increase associated with parachute inflation began. The parachute inflated in 0.24 second to the full-open condition for a total elapsed opening time of 0.71 second. The maximum opening load of 3970 pounds (17,700 newtons) came at the time the parachute was just fully opened. During the deceleration period, the parachute exhibited an average drag coefficient of 0.52 and oscillations of the parachute canopy were less than 5 degrees. During the steady-state terminal descent portion of the test period, the average effective drag coefficient (based on vertical descent velocity) was 0.52.
    Keywords: Aerodynamics
    Type: L-966
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...