ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (37)
  • Protein Conformation  (37)
  • American Association for the Advancement of Science (AAAS)  (37)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Copernicus
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • Molecular Diversity Preservation International
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2022
  • 2010-2014
  • 1985-1989  (37)
  • 1960-1964
  • 1988  (37)
  • 1962
  • Computer Science  (37)
  • Chemistry and Pharmacology  (37)
  • Medicine  (37)
  • History
  • Geography
  • Architecture, Civil Engineering, Surveying
Collection
  • Articles  (37)
Publisher
  • American Association for the Advancement of Science (AAAS)  (37)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Copernicus
  • Hindawi
  • +
Years
  • 2020-2022
  • 2010-2014
  • 1985-1989  (37)
  • 1960-1964
Year
Topic
  • 1
    Publication Date: 1988-09-16
    Description: In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parraga, G -- Horvath, S J -- Eisen, A -- Taylor, W E -- Hood, L -- Young, E T -- Klevit, R E -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047872" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; DNA Mutational Analysis ; *DNA-Binding Proteins ; Magnetic Resonance Spectroscopy ; Metalloproteins ; Protein Conformation ; Saccharomyces cerevisiae ; Structure-Activity Relationship ; *Transcription Factors ; Zinc/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-04-15
    Description: The solution conformation of plastocyanin from the green alga Scenedesmus obliquus has been determined from distance and dihedral angle constraints derived by nuclear magnetic resonance (NMR) spectroscopy. Structures were generated with distance geometry and restrained molecular dynamics calculations. A novel molecular replacement method was also used with the same NMR constraints to generate solution structures of S. obliquus plastocyanin from the x-ray structure of the homologous poplar protein. Scenedesmus obliquus plastocyanin in solution adopts a beta-barrel structure. The backbone conformation is well defined and is similar overall to that of poplar plastocyanin in the crystalline state. The distinctive acidic region of the higher plant plastocyanins, which functions as a binding site for electron transfer proteins and inorganic complexes, differs in both shape and charge in S. obliquus plastocyanin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, J M -- Case, D A -- Chazin, W J -- Gippert, G P -- Havel, T F -- Powls, R -- Wright, P E -- GM36643/GM/NIGMS NIH HHS/ -- GM38221/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 15;240(4850):314-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3353725" target="_blank"〉PubMed〈/a〉
    Keywords: Calorimetry ; Chlorophyta/*metabolism ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; *Plant Proteins ; *Plastocyanin ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-08
    Description: Gramicidin, a linear polypeptide composed of hydrophobic amino acids with alternating L- and D- configurations, forms transmembrane ion channels. The crystal structure of a gramicidin-cesium complex has been determined at 2.0 angstrom resolution. In this structure, gramicidin forms a 26 angstrom long tube comprised of two polypeptide chains arranged as antiparallel beta strands that are wrapped into a left-handed helical coil with 6.4 residues per turn. The polypeptide backbone forms the interior of the hydrophilic, solvent-filled pore and the side chains form a hydrophobic and relatively regular surface on the outside of the pore. This example of a crystal structure of a solvent-filled ion pore provides a basis for understanding the physical nature of ion translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, B A -- Ravikumar, K -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2455344" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cesium ; Computer Simulation ; Crystallography ; *Gramicidin ; *Ion Channels ; Ligands ; Macromolecular Substances ; *Membrane Proteins ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-02
    Description: Study of proteins that recognize specific DNA sequences has yielded much information, but the field is still in its infancy. Already two major structural motifs have been discovered, the helix-turn-helix and zinc finger, and numerous examples of DNA-binding proteins containing either of them are known. The restriction enzyme Eco RI uses yet a different motif. Additional motifs are likely to be found as well. There is a growing understanding of some of the physical chemistry involved in protein-DNA binding, but much remains to be learned before it becomes possible to engineer a protein that binds to a specific DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleif, R -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2842864" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Binding Sites ; Chemical Phenomena ; Chemistry ; DNA/metabolism ; DNA Restriction Enzymes/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease EcoRI ; Electrochemistry ; Nucleic Acids/metabolism ; Protein Conformation ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):863-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2460921" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/prevention & control ; Amino Acid Sequence ; Antigens/*immunology ; Epitopes/immunology ; Major Histocompatibility Complex ; Protein Conformation ; T-Lymphocytes/*immunology ; Viral Vaccines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1988 Feb 19;239(4842):863.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3124269" target="_blank"〉PubMed〈/a〉
    Keywords: GTP-Binding Proteins/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Neoplasms/genetics ; Protein Conformation ; *Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-11
    Description: A peptide 60 residues in length that corresponds to the homeo domain of Antennapedia (Antp), a protein governing development in Drosophila, was synthesized by segment condensation with protected peptide segments prepared on an oxime resin. A footprinting assay showed that the homeo domain binds specifically to a TAA repeat DNA sequence in the Antp gene. Thus the Antp homeo domain has a sequence-specific DNA binding property. The circular dichroism spectra of the homeo domain peptide showed the presence of a significant amount of alpha-helical structure in aqueous solution and in 50 percent trifluoroethanol. The alpha helicity measured in water appears to depend on the peptide concentration, which suggests that the peptide aggregates. These results support the hypothesis that the homeo domain binds to DNA through a helix-turn-helix motif.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mihara, H -- Kaiser, E T -- RR 862/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):925-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioorganic Chemistry and Biochemistry, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2903553" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Chromatography, High Pressure Liquid ; Circular Dichroism ; DNA/*metabolism ; Drosophila/*growth & development ; Electrophoresis, Polyacrylamide Gel ; *Genes, Homeobox ; Insect Hormones/*chemical synthesis/genetics/metabolism ; Molecular Sequence Data ; Peptide Fragments/*chemical synthesis/genetics ; Protein Conformation ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-06-17
    Description: The specificity of complex formation between cytochrome b5 (cyt b5) and cytochrome c (cyt c) is believed to involve the formation of salt linkages between specific carboxylic acid residues of cyt b5 with lysine residues on cyt c. Site-directed mutagenesis was used to alter the specified acidic residues of cyt b5 to the corresponding amide analogues, which resulted in a lower affinity for complex formation with cyt c. The dissociation of the complex under high pressure resulted in specific volume changes, the magnitude of which reflected the degree of solvation of the acidic residues in the proposed protein-protein interface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodgers, K K -- Pochapsky, T C -- Sligar, S G -- GM 31756/GM/NIGMS NIH HHS/ -- GM 33775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1657-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois, Urbana 61801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2837825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytochrome b Group/genetics/*metabolism ; Cytochrome c Group/*metabolism ; Cytochromes b5 ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrostatic Pressure ; Macromolecular Substances ; Mutation ; Protein Conformation ; Rats ; Solubility ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...