ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Inorganic Chemistry  (2.942)
  • Organic Chemistry  (2.886)
  • Analytical Chemistry and Spectroscopy  (1.561)
  • Chemical Engineering  (1.533)
  • Physics
  • STRUCTURAL MECHANICS
  • 2020-2022
  • 1995-1999  (3.806)
  • 1985-1989
  • 1975-1979
  • 1970-1974
  • 1965-1969  (2.574)
  • 1960-1964  (3.693)
  • 1995  (3.806)
  • 1968  (2.574)
  • 1964  (1.921)
  • 1962  (1.772)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2022
  • 1995-1999  (3.806)
  • 1985-1989
  • 1975-1979
  • 1970-1974
  • +
Jahr
  • 11
    Publikationsdatum: 2019-08-14
    Beschreibung: Buckling and initial postbuckling behavior of thin elastic cylindrical shells of elliptical cross section
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: ; TA FREQUENZA (
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-14
    Beschreibung: Simulation of structural landing system for lunar spacecraft
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-CR-64815 , The Role of Simulation in Space Technology; Aug 17, 1964 - Aug 21, 1964
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: Mission plans for mariner mars 1964
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: News Release No. 64-266
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-07-20
    Beschreibung: A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-CR-197426 , NAS 1.26:197426
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019-07-13
    Beschreibung: Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-CR-198610 , NAS 1.26:198610 , CCMS-95-04 , VPI-E-95-01
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019-07-13
    Beschreibung: A methodology to compute cumulative probability distribution functions (CDF) of fatigue life for different ratios, r of applied stress to the laminate strength based on first ply failure criteria has been developed and demonstrated. Degradation effects due to long term environmental exposure and mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation/aging of material properties due to cyclic loads. Fast probability integration method is used to perform probabilistic simulation of uncertainties. Sensitivity of fatigue life reliability to uncertainties in the primitive random variables are computed and their significance in the reliability based design for maximum life is discussed. The results show that the graphite/epoxy (0/+45/90) deg laminate with ply thickness 0.125 in. has 500,000 cycles life for applied stress to laminate strength ratio of 0.6 and a reliability of 0.999. Also, the fatigue life reliability has been found to be most sensitive to the ply thickness and matrix tensile strength. Tighter quality controls must therefore be enforced on ply thickness and matrix strength in order to achieve high reliability of the structure.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-TM-106893 , E-9537 , NAS 1.15:106893 , AIAA PAPER 94-1445 , Structures, Structural Dynamics and Materials Conference; Apr 18, 1994 - Apr 21, 1994; Hilton Head, SC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-07-13
    Beschreibung: Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential base multiaxial, nonisothermal unified viscoplastic model is obtained. This model possesses one tensorial internal state variable (that is, associated with dislocation substructure) and an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of nonlinear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated), greatly influences the multiaxial response under non-proportional loading paths, and in the case of nonisothermal histories, introduces an instantaneous thermal softening mechanism proportional to the rate of change in temperature. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. The specific model proposed is characterized for a representative titanium alloy commonly used as the matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification of the proposed model is shown using 'specialized' non-standard isothermal and thermomechanical deformation tests.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-TM-106926 , E-9644 , NAS 1.15:106926 , Symposium on Thermomechanical Fatigue Behavior of Materials; Nov 13, 1994 - Nov 18, 1994; Phoenix, AZ; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-07-13
    Beschreibung: Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-TM-106836 , E-9398 , NAS 1.15:106836 , 1995 World Users'' Conference; May 08, 1995 - May 12, 1995; Los Angeles, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-07-13
    Beschreibung: The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-TM-106852 , E-9441 , NAS 1.15:106852 , Turbo Expo 1995; Jun 05, 1995 - Jun 08, 1995; Houston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-07-13
    Beschreibung: Probabilistic predictions based on the IPACS code are presented for the material and structural response of unnotched and notched, IM6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is judged poor because IPACS did not have a progressive failure capability at the time this work was performed. The report also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-CR-198429 , NAS 1.26:198429 , E-10027 , NIPS-96-08129
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...