ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (3)
  • American Chemical Society (ACS)
  • American Physical Society
  • American Physical Society (APS)
  • Copernicus
  • Institute of Physics
  • Molecular Diversity Preservation International
  • Public Library of Science (PLoS)
  • 2020-2024
  • 2020-2023  (1)
  • 2020-2022
  • 2010-2014  (2)
  • 1960-1964
  • 2021  (1)
  • 2021  (1)
  • 2021  (1)
  • 2014  (2)
  • 1963
  • 1960
Sammlung
Datenquelle
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2024
  • 2020-2023  (1)
  • 2020-2022
  • 2010-2014  (2)
  • 1960-1964
Jahr
  • 1
    facet.materialart.
    Unbekannt
    American Chemical Society (ACS)
    In:  Industrial & Engineering Chemistry Research, 53 (17). pp. 6998-7007.
    Publikationsdatum: 2018-01-03
    Beschreibung: Structure I methane hydrates are formed in situ from water-in-mineral oil emulsions in a high pressure rheometer cell. Viscosity is measured as hydrates form, grow, change under flow, and dissociate. Experiments are performed at varying water volume fraction in the original emulsion (0–0.40), temperature (0–6 °C), and initial pressure of methane (750–1500 psig). Hydrate slurries exhibit a sharp increase in viscosity upon hydrate formation, followed by complex behavior dictated by factors including continued hydrate formation, shear alignment, methane depletion/dissolution, aggregate formation, and capillary bridging. Hydrate slurries possess a yield stress and are shear-thinning fluids, which are described by the Cross model. Hydrate slurry viscosity and yield stress increased with increasing water volume fraction. As driving force for hydrate formation decreases (increasing temperature, decreasing pressure), hydrate slurry viscosity increases, suggesting that slower hydrate formation leads to larger and more porous aggregates. In total, addition of water to a methane saturated oil can cause more than a fifty-fold increase in viscosity if hydrates form.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
  • 3
    Publikationsdatum: 2022-01-17
    Beschreibung: Earth's climate can be understood as a dynamical system that changes due to external forcing and internal couplings. Essential climate variables, such as surface air temperature, describe this dynamics. Our current interglacial, the Holocene (11 700 yr ago to today), has been characterized by small variations in global mean temperature prior to anthropogenic warming. However, the mechanisms and spatiotemporal patterns of fluctuations around this mean, called temperature variability, are poorly understood despite their socioeconomic relevance for climate change mitigation and adaptation. Here we examine discrepancies between temperature variability from model simulations and paleoclimate reconstructions by categorizing the scaling behavior of local and global surface air temperature on the timescale of years to centuries. To this end, we contrast power spectral densities (PSD) and their power-law scaling using simulated and observation-based temperature series of the last 6000 yr. We further introduce the spectral gain to disentangle the externally forced and internally generated variability as a function of timescale. It is based on our estimate of the joint PSD of radiative forcing, which exhibits a scale break around the period of 7 yr. We find that local temperature series from paleoclimate reconstructions show a different scaling behavior than simulated ones, with a tendency towards stronger persistence (i.e., correlation between successive values within a time series) on periods of 10 to 200 yr. Conversely, the PSD and spectral gain of global mean temperature are consistent across data sets. Our results point to the limitation of climate models to fully represent local temperature statistics over decades to centuries. By highlighting the key characteristics of temperature variability, we pave a way to better constrain possible changes in temperature variability with global warming and assess future climate risks.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...