ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Stability and Control  (57)
  • Biochemistry and Biotechnology  (39)
  • AERODYNAMICS  (31)
  • Spacecraft Propulsion and Power  (14)
  • Animals
  • 1995-1999
  • 1955-1959  (141)
  • 1925-1929
  • 1959  (141)
Collection
Keywords
Publisher
Years
  • 1995-1999
  • 1955-1959  (141)
  • 1925-1929
Year
  • 101
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: No abstract available
    Keywords: AERODYNAMICS
    Type: MSF-TN-J-13-59 , BAC-7021-3252-002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-10
    Description: The results are presented in the form of preliminary design charts which give a comparison between the dynamic-response factors of the semi-rigid case and the airplane longitudinal short-period case and between the dynamic-response factors of the semi-rigid case and the steady-state value of the airplane longitudinal short-period response. These charts can be used to estimate the first-order effects of the addition of a wing-bending degree of freedom on the short-period dynamic-response factor and on the maximum dynamic-response factor when compared with the steady-state response of the system.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-07-10
    Description: Limitations on fully developed laminar flows due to compressibility and property variations are examined. The cases, for liquids and for gases, wherein such motions are "exact" are determined and solutions are given. For more general conditions, not permitting an exact fully developed flow, limitations are set. Two cases arise depending on the size of the temperature variation across the channel. Both the forced and free flow are solved for the case of large temperature variation. Finally, there are described briefly some circumstances under which streamwise variations of velocity occur. The case where the velocity varies inversely with the square root of the distance is solved.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-TR-R-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-10
    Description: A concept of combustion time lag that includes dependency on injection velocity is introduced. The concept is used in the formulation of chamber transfer functions and in an analysis of low-frequency combustion instability. Theoretical frequency responses and stability boundaries are compared with those obtained when the injection-velocity effect on the time lag to be an important consideration, in the theory of chamber dynamics and combustion instability
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-TR-R-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-08-15
    Description: A 0.10-scale model of a swept-wing fighter airplane was tested in the Langley high-speed 7- by 10-foot tunnel at Mach numbers from 0.60 to 0.92 to determine the effects of adding underfuselage speed brakes. The results of brief spoiler-aileron lateral control tests also are included. The tests show acceptable trim and drag increments when the speed brakes are installed at the 32-71-inch fuselage station.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-188 , L-381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-08-15
    Description: Force tests of the static and dynamic lateral stability characteristics of a VTOL airplane having a triangular wing mounted high on the fuselage with a triangular vertical tail on top of the wing and no horizontal tail have been made in the Langley free-flight tunnel. The static lateral stability parameters and the rolling, yawing, and sideslipping dynamic stability derivatives are presented without analysis.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-143 , L-640
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-08-15
    Description: Results of hypersonic flutter tests on some simple models are presented. The models had rectangular plan forms of panel aspect ratio 1.0, no sweepback, and bending-to-torsion frequency ratios of about 1/3. Two airfoil sections were included in the tests; double wedges of 5-, 10-, and 15-percent thickness and flat plates with straight, parallel sides and beveled leading and trailing edges. The models were supported by a cantilevered shaft. The double-wedge wings were tested in helium at a Mach number of 7.2. An effect of airfoil thickness on flutter speed was found, thicker wings requiring more stiffness to avoid flutter. A few tests in air at a Mach number of 6.9 showed the same thickness effect and also indicated that tests in helium would predict conservative flutter boundaries in air. The data in air and helium seemed to be correlated by piston-theory calculations. Piston-theory calculations agreed well with experiment for the thinner models but began to deviate as the thickness parameter MT approached and exceeded 1.0. A few tests on flat-plate models with various elastic-axis locations were made. Piston-theory calculations would not satisfactorily predict the flutter of these models, probably because of their blunt leading edges.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-8-59L , L-199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-08-15
    Description: An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances, unstable values were measured for the model configuration with the horizontal tail removed.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-08-15
    Description: An analytical approach is presented which is applicable to the optimization of homing navigation guidance systems which are forced to operate in the presence of radar noise. The two primary objectives are to establish theoretical minimum miss distance performance and a method of synthesizing the optimum control system. The factors considered are: (1) target evasive maneuver, (2) radar glint noise, (3) missile maneuverability, and (4) the inherent time-varying character of the kinematics. Two aspects of the problem are considered. In the first, consideration is given only to minimization of the miss distance. The solution given cannot be achieved in practice because the required accelerations are too large. In the second, results are extended to the practical case where the limited acceleration capabilities of the missile are considered by placing a realistic restriction on the mean-square acceleration so that system operation is confined to the linear range. Although the exact analytical solution of the latter problem does not appear feasible, approximate solutions utilizing time-varying control systems can be found. One of these solutions - a range multiplication type control system - is studied in detail. It is shown that the minimum obtainable miss distance with a realistic restriction on acceleration is close to the absolute minimum for unlimited missile maneuverability. Furthermore, it is shown that there is an equivalence in performance between the homing and beam-rider type guidance systems. Consideration is given to the effect of changes in target acceleration, noise magnitude, and missile acceleration on the minimum miss distance.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-13-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-08-15
    Description: An investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/30-scale model of the Grumman WF-2 airplane. The effects of control settings and movements upon the erect-spin and recovery characteristics for the flight gross-weight loading with normal center-of-gravity and rearward center-of-gravity positions were determined. For the inverted-spin tests, the flight gross-weight loading with normal center-of-gravity position was used. Brief tests were also made with the radome removed to determine the effect of the radome on the spin and recovery characteristics of the airplane. The results of the tests of the model indicate that erect spins of the airplane in the flight gross-weight loading with the normal (26.3-percent mean aerodynamic chord) center-of-gravity position and with the most rearward (30-percent mean aerodynamic chord) center-of-gravity position possible will be satisfactorily terminated by full rudder reversal to against the spin accompanied by movement of the elevator to at least two-thirds down. With the radome removed, the spin will be steeper and considerably more oscillatory than with the radome on. Recoveries by the preceding technique will be satisfactory. Inverted spins of the airplane will be satisfactorily terminated by full rudder reversal followed by neutralization of the longitudinal and lateral controls.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-24-59L , L-326 , NASA-AD-3134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-08-15
    Description: A wind-tunnel investigation was made of the low-speed characteristics of a canard configuration having triangular wing and canard surfaces with an aspect ratio of 2. The exposed area of the canard was 6.9 percent of the total wing area. The canard hinge line was located at 0.35 of its mean aerodynamic chord and was 0.5 wing mean aerodynamic chord lengths forward of the wing apex. The ground effects, which made the lift more positive and the -Pitching moment more negative at a given angle of attack, were unaffected by the canard. The stability of the model at a constant canard hinge-moment coefficient decreased to 0 near a lift coefficient of 1.0. In addition, the maximum lift coefficient at which the canard could provide balance was decreased by ground effects to less than 1.0 if the moment center was as far forward as 0.21 of the wing mean aerodynamic chord. The relative magnitude of interference effects between the canard and the wing and body is presented.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-4-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-08-15
    Description: A preliminary theoretical investigation has been made of the short-period longitudinal and steady-rolling (inertia coupling) stability of a hypersonic glider configuration for center-of-gravity locations rear-ward of the airplane neutral point. Such center-of-gravity positions for subsonic flight would improve performance by reducing supersonic and hypersonic static margins and trim drag. Results are presented of stability calculations and a simulator study for a velocity of 700 ft/sec and an altitude of 401,000 feet. With no augmentation, the airplane was rapidly divergent and was considered unsatisfactory in the simulator study. When a pitch damper was employed as a stability augmenter, the short-period mode became overdamped, and the airplane was easily controlled on the simulator. A steady-rolling analysis showed that the airplane can be made free of rolling divergence for all roll rates with an appropriate damper gain.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-5-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-08-15
    Description: Based on linearized equations of motion utilizing only the three moment equations and assuming only flat-spin conditions, it appears that contemporary designs (with the moment of inertia about the wing axis I(sub Y) considerably greater than the moment of inertia about the fuselage axis I(sub X) having positive values of C(sub l, sub p) (rolling-moment coefficient due to rolling) or positive values of C(sub l, sub beta) (rolling-moment coefficient due to sideslip) will probably not have a stable spin in the flat-spin region near an angle of attack of 90 deg. If the damping in pitch in flat-spin attitudes is zero, stable flat-spin conditions may not be possible on an airplane having the mass primarily distributed along the wings. The effect of moving ailerons with the spin or the effect of applying a positive pitching moment producing recovery for contemporary fighter designs will be greatest for large negative values of C(sub n, sub beta) (yawing-moment coefficient due to sideslip). In addition, for a certain critical value of positive C(sub n, sub beta), the rolling moment applied by moving ailerons with the spin or the application of a positive pitching moment will have no effect on reducing the spin rate.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-25-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-08-15
    Description: A wind-tunnel investigation was made to determine the longitudinal- and lateral-stability derivatives of a flat-top wing-body configuration at Mach numbers from 0.22 to 0.90 and Reynolds numbers of 3.5 and 17 million. The wing had a leading-edge sweepback of 78.9 deg and a cathedral of 45 deg on the outer panels. The tests included the determination of the effectiveness of elevon and rudder controls and also an investigation of ground effects. The model was tested at angles of attack up to 28 deg and angles of sideslip up to 18 deg. The dynamic response of this configuration has been determined from the wind-tunnel data for a simulated airplane having a wing loading of 17.7 pounds per square foot. The longitudinal data show a forward shift in aerodynamic center of 10 percent of the mean aerodynamic chord as the lift coefficient is increased above 0.1. Although flown in the lift range of decreasing stability, the simulated airplane did not encounter pitch-up in maneuvers initiated from steady level flight with zero static margin unless a load factor of 2.2 was exceeded. This maneuver margin was provided by a large value of pitching moment due to pitching velocity. The number of cycles to damp the Dutch roll mode to half amplitude, the time constants of the roll subsidence and spiral divergence modes, and control effectiveness in roll are computed. The lateral stability is shown to be positive but is marginal in meeting the military specifications for today's aircraft. An analog computer study has been made in five degrees of freedom (constant velocity) which illustrates that the handling characteristics are satisfactory. Several programed rolling maneuvers and coordinated turns also illustrate the handling qualities of the airplane.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-5-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-08-15
    Description: Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-2-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-08-15
    Description: Results are presented of a wind-tunnel investigation to evaluate the static and dynamic stability derivatives of a model with a low-aspect-ratio unswept wing and a high horizontal tail. In addition to results for the complete model, results were also obtained of the body alone, body and wing, and body and tail. Data were obtained in the Mach number range from 0.65 to 2.2, at a Reynolds number of 2 million based on the wing mean aerodynamic chord. The angle-of-attack range for most of the data was -11.5 deg to 18 deg. A limited amount of data was obtained with fixed transition. A correspondence between the damping in pitch and the static stability, previously noted in other investigations, was also observed in the present results. The effect observed was that a decrease (or increase) in the static stability was accompanied by an increase (or decrease) in the damping in pitch. A similar correspondence was observed between the damping in yaw and the static-directional stability. Results from similar tests of the same model configuration in two other facilities over different speed ranges are presented for comparison. It was found that most of the results from the three investigations correlated reasonably well. Estimates of the rotary derivatives were made using available procedures. Comparison with the experimental results indicates the need for development of more precise estimation procedures.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-5-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley free-flight tunnel at low-subsonic speeds to provide some basic information on the stability and control characteristics in the high angle-of-attack range of an airplane configuration typical of current design trends. The investigation consisted of static- and dynamic-force tests over an angle-of- attack range from -10 to 90 deg. The dynamic-force tests, which consisted of both linear- and rotary-oscillation tests, were conducted at values of the reduced-frequency parameter k of 0.10, 0.15, and 0.20. The configuration was directionally unstable for all angles of attack above about 15 deg but maintained positive effective dihedral, control effectiveness, and damping in roll and yaw over most of the angle-of-attack range tested. The effects of frequency on the oscillatory stability derivatives were found to be generally small, but in a few cases the effects were relatively large.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-20-59L , L-365
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-08-15
    Description: The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-MEMO-5-14-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-08-15
    Description: A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-TM-X-100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-08-15
    Description: An investigation of a small-scale reaction control devices in still air with both subsonic and supersonic internal flows has shown that lateral forces approaching 70 percent of the resultant force of the undeflected jet can be obtained. These results were obtained with a tilted extension at a deflection of 40 deg. The tests of tilted extensions indicated an optimum length-to-diameter ratio of approximately 0.75 to 1.00, dependent upon the deflection angle. For the two geometric types of spoiler tabs tested, blockage-area ratio appears to be the only variable affecting the lateral force developed. Usable values of lateral force were developed by the full-eyelid type of device with reasonably small losses in the thrust and weight flow. Somewhat larger values of lateral force were developed by injecting a secondary flow normal to the primary jet, but for conditions of these tests the losses in thrust and weight flow were large. Relatively good agreement with other investigations was obtained for several of the devices. The agreement of the present results with those of an investigation made with larger-scale equipment indicates that Reynolds number may not be critical for these tests. In as much as the effects of external flow could influence the performance and other factors affecting the choice of a reaction control for a specific use, it would appear desirable to make further tests of the devices described in this report in the presence of external flow.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-11-59L , L-160
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-08-15
    Description: A flight investigation of an automatic throttle control in landing approaches has been made. It was found that airspeed could be maintained satisfactorily by the automatic throttle control. Turbulent air caused undesirably large variations of engine power which were uncomfortable and disconcerting; nevertheless, the pilot felt that he could make approaches 5 knots slower with equal assurance when the automatic control was in operation.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-19-59L , L-432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-08-15
    Description: Seven stabilizers were tested at a Mach number of 2 in order to determine the effects of aerodynamic heating and loading on the structural stability of the stabilizer. The models differed in internal structure and postcure temperatures of the laminated Fiberglass skin. Tests were made at various stagnation temperatures between 440 F and 625 F. The postcure temperatures of the Fiberglass skins were found to affect significantly the ability of the model to withstand the imposed test conditions.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-08-15
    Description: An investigation of the low-speed static stability and control characteristics of a model of a right triangular pyramid reentry configuration has been made in the Langley free-flight tunnel. The investigation showed that the model had generally satisfactory longitudinal and lateral static stability characteristics. The maximum lift-drag ratio was increased from about 3 to 5 by boattailing the base of the model.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-11-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-08-15
    Description: An investigation has been made in the Langley free-flight tunnel at low-subsonic speed to determine the static stability, control effectiveness, and damping in roll and yaw of a model with a low-aspect-ratio unswept wing and two different fuselage forebodies at angles of attack from 0 deg to 90 deg. Results were obtained with a fuselage configuration having a long pointed nose and a shorter rounded nose. Although the wing stalled at an angle of attack of about 12 deg, maximum lift did not occur until an angle of attack of about 40 deg or 50 deg was obtained. The static longitudinal stability of the model having a short rounded nose was greater than that of the model having a longer pointed nose over the entire angle-of-attack range. The pointed-nose model had large out-of-trim yawing moments above an angle of attack of about 40 deg. Shortening and rounding the nose of the model delayed these out-of-trim yawing moments to slightly higher angles of attack. Both models were directionally unstable above an angle of attack of about 20 deg, but both had positive effective dihedral over virtually the entire angle-of-attack range. At the higher angles of attack the pointed-nose model had generally better damping in roll than that of the rounded-nose model. Both models had very high damping in yaw at an angle of attack of about 50 deg or 60 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-22-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-08-15
    Description: Results of analytical and flight studies are presented to indicate the effect of yaw damping on the airplane motions and the vertical-tail loads in rough air. The analytical studied indicate a rapid reduction in loads on the vertical tail as the damping is increased up to the point of damping the lateral motions to 1/2 amplitude in one cycle. Little reduction in load is obtained by increasing the lateral damping beyond that point. Flight measurements made in rough air at 5,000 and 35,000 feet on a large swept-wing bomber equipped with a yaw damper show that the yaw damper decreased the loads on the vertical tail by about 50 percent at 35,000 feet. The reduction in load at 5,000 feet was not nearly as great. Measurements of the pilot's ability to damp the lateral motions showed that the pilot could provide a significant amount of damping but that manual control was not as effective as a yaw damper in reducing the loads.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-17-59L , L-433
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-08-15
    Description: A method has been described for predicting the probable relative severity of pitch-up of a new airplane design prior to initial flight tests. An illustrative example has been presented which demonstrated the use of this procedure for evaluating the pitch-up behavior of a large, relatively flexible airplane. It has also been shown that for airplanes for which a mild pitch-up tendency is predicted, the wing and tail loads likely to be encountered in pitch-up maneuvers would not assume critical values, even for pilots unfamiliar with pitch-up.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-7-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-08-15
    Description: Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-14-59A , A-138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-08-15
    Description: A theoretical investigation was conducted to determine the effects of body boundary-layer separation resulting from a highly underexpanded jet on the dynamic stability of a typical rocket aircraft during an atmospheric exit trajectory. The particular flight condition studied on a digital computer for five degrees of freedom was at Mach 6.0 and 150,000 feet. In view of the unknown character of the separated flow field, two estimates of the pressures in the separated region were made to calculate the unbalanced forces and moments. These estimates, based on limited fundamental zero-angle-of-attack studies and observations, are believed to cover what may be the actual case. In addition to a fixed control case, two simulated pilot control inputs were studied: rate-limited and instantaneous responses. The resulting-motions with and without boundary-layer separation were compared for various initial conditions. The lower of the assumed misalinement forces and moments led to a situation whereby a slowly damped motion could be satisfactorily controlled with rate-limited control input. The higher assumption led to larger amplitude, divergent motions when the same control rates were used. These motions were damped only when the instantaneous control responses were assumed.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-22-59E , E-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-08-15
    Description: The effect of turbopump design on rocket gross weight was investigated for a high-pressure bleed-type hydrogen-reactor long-range rocket with a fixed mission. Axial-flow, mixed-flow, and centrifugal pumps driven by single and twin turbines were considered. With an efficiency of 0.7 assumed for all pumps, the lowest rocket gross weights were obtained with an axial-flow or a mixed-flow pump driven by a single turbine of at least eight stages. All turbopump combinations could be used, however, with gross weight varying less than 8 percent for a given payload. Turbopump efficiencies have a significant effect on the ratio of gross weight to payload with the magnitude of the effect determined by the ratio of rocket structural weight to total propellant weight. One point in pump efficiency is worth 0.2 percent in gross weight for a given payload with a structural weight parameter of 0.1 and 0.6 percent with a structural weight parameter of 0.2. Turbine and pump weights are much less significant in terms of gross-to-pay weight ratio than the efficiencies of these components. One point in pump efficiency is equivalent to approximately 13 percent in pump weight, while 1 point in turbine efficiency is equivalent to about 7 percent in turbine weight.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-MEMO-5-12-59E , E-215
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-08-17
    Description: An investigation has been conducted to determine the longitudinal stability and control characteristics of a reentry configuration at a Mach number of 2.01. The configuration consisted of clipped delta wing with hinged wing-tip panels. The results indicate that deflecting the wing-tip panels from a position normal to the wing chord plane to a position coincident with the wing chord plane resulted in a stabilizing change in the pitching-moment characteristics but did not significantly affect the nonlinearity of the pitching-moment variation with angle of attack. The trailing-edge controls were effective in producing pitching moment throughout the angle-of-attack range for control deflections up to at least 600. The control deflection required for trim, however, varied nonlinearly with angle of attack. It would appear that this nonlinearity as well as the maximum deflection required for trim could be greatly decreased by utilizing a leading-edge control in conjunction with a trailing-edge control.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-08-16
    Description: An F-86E airplane, in which servo actuation of the ailerons and rudder provides artificial variation of the important lateral and directional aerodynamic stability parameters, has been flown by test pilots of the NASA, U.S. Air Force, and one aircraft manufacturer to determine satisfactory and acceptable levels of lateral oscillatory damping in the landing approach. In addition to normal operational use, particular consideration was given to the emergency condition of failure of stability-augmentation equipment. In this study, the pilots' opinions of the airplane dynamic stability and control characteristics in smooth and simulated rough air have been recorded according to a numerical rating scale. The results are presented in the form of boundaries in terms of cycles to damp to half amplitude, 1/C(sub 1/2), or time to damp to half amplitude, 1/T(1/2) and bank-to-sideslip ratio, and are discussed in relation to existing flying-qualities criteria. Though the present results, which were obtained at 170 knots indicated airspeed and 10,000-feet altitude, indicated that increased damping is required with increased bank-to-sideslip ratio (as found in previous work), consideration of the dampers-failed condition indicated a great reduction in the minimum acceptable damping. At moderate values of bank-to-sideslip ratio, effects of lateral-oscillation period on pilot-opinion variation with damping appeared to be taken into account by use of the parameter 1/T(sub 1/2).
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-10-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-08-16
    Description: An investigation has been made utilizing a three-blade, 10-foot- diameter, supersonic-ty-pe propeller to determine propeller flutter characteristics. The particular flutter characteristics of interest were (1) the effect of stall flutter on a propeller operating in positive and negative thrust, (2) the effect of stall flutter on a propeller operating with the thrust axis inclined, and (3) the variation of vibratory blade shear stresses as the stall flutter boundary is penetrated and exceeded. Thrust and power measurements were made for all test conditions. Wake and inflow surveys were made when appropriate, to define the thrust and torque distributions and the magnitude of the inflow velocity. Stress measurements were made simultaneously to obtain the propeller flutter and bending response. It was found when operating both in the positive and negative thrust regions that, for most cases after the onset of flutter, the magnitude of the flutter stresses at first increased rapidly with section blade angle P, after which further increases in 0 resulted in only a moderate increase or a reduction in stress. Thrust-axis inclination up to the limit of the tests (angle of attack of 15 deg and dynamic pressure of 40 psf) appeared to have no effect on stall flutter. The stall flutter stresses were found to be directly associated with the section thrust characteristics of the blades. The onset of flutter was found to occur simultaneously with the divergence of the section thrust variation with blade angle from linearity for stations outboard of the blade 0.8-radius station. The maximum flutter stresses appeared to be a function of the maximum section thrust obtained at or in the vicinity of the blade 0.8-radius station. In an attempt to correlate two-dimensional airfoil data with three-dimensional data to predict the stall angle of attack (divergence of the section thrust) of the blade sections, it was found that no consistent correlation could be obtained. Also, a knowledge of the inflow conditions appeared to be insufficient to account for differences in airfoil characteristics between the two-dimensional and the three-dimensional cases.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-9-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-08-16
    Description: Subsonic span loads and the resulting stability derivatives have been calculated using the discrete-horseshoe-vortex method for a systematic series of horizontal tails in combination with a vertical tail of aspect ratio 1.0 in order to provide information on the effect of varying the chord of the horizontal tail for isolated tail assemblies performing sideslip and steady-roll motions. In addition, the effects of horizontal-tail dihedral angle for the sideslip case were obtained. Each tail surface considered had a taper ratio of 0.5 and an unswept quarter-chord line. The investigation covered variations in horizontal-tail chord, horizontal-tail span, and vertical location of the horizontal tail. The span loads and the resulting total stability derivatives as well as the vertical- and horizontal-tail contributions to these tail-assembly derivatives are presented in the figures for the purpose of showing the influence of the geometric variables. The results of this investigation showed trends that were in agreement with the results of previous investigations for variations in horizontal-tail span and vertical location of the horizontal tail. Variations in horizontal-tail chord expressed herein in terms of the root-chord ratio, that is, the ratio of horizontal-tail root chord to vertical-tail root chord, were found to have a pronounced influence on most of the span loads and the resulting stability derivatives. For most of the cases considered, the rate of change of the span load coefficients and the stability derivatives with the root-chord ratio was found to be a maximum for small values of root-chord ratio and to decrease as root-chord ratio increased.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-1-59L , L-216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-08-16
    Description: An examination of oscillatory stability for a straight-winged airplane with large concentrated wing-tip masses was made using wing-bending and airplane-pitching degrees of freedom and considering only quasi-steady aerodynamic forces. It was found that instability caused by coupling of airplane pitching and wing bending occurred for large ratios of effective wing-tip mass to total airplane mass and for coupled wing-bending frequencies near or below the uncoupled pitching frequency. Boundaries for this instability are given in terms of two quantities: (1) the ratio of effective tip mass to airplane mass, which can be estimated, and (2) the ratio of the coupled bending frequency to the uncoupled pitch frequency, which can be measured in flight. These boundaries are presented for various values of several airplane parameters.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-29-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-08-16
    Description: The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-20-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-08-16
    Description: An investigation to determine the low-speed rolling, yawing, and sideslipping derivatives of a 1/7-scale model which was used to represent the original configuration and a modified configuration of the North American X-15 airplane has been conducted in the Langley free-flight tunnel. The original model was modified to approximately represent the final airplane configuration by reducing the size of the fuselage side fairings and changing the vertical-tail arrangement. The effects of various tail arrangements were determined for both configurations and the effect of small forebody strakes was determined for the modified configuration only.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-08-16
    Description: A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-199
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-08-16
    Description: A transonic flutter investigation has been made of models of the T-tail of the Blackburn NA-39 airplane. The models were dynamically and elastically scaled from measured airplane data in accordance with criteria which include a flutter safety margin. The investigation was made in the Langley transonic blowdown tunnel and covered a Mach number range from 0.73 to 1.09 at simulated altitudes extending to below sea level. The results of the investigation indicated that, if differences between the measured model and scaled airplane properties are disregarded, the airplane with the normal value of stabilizer pitching stiffness should have a stiffness margin of safety of at least 32 percent at all Mach numbers and altitudes within the flight boundary. However, the airplane with the emergency value of stabilizer pitching stiffness would not have the required margin of safety from symmetrical flutter at Mach numbers greater than about 0.85 at low altitudes. First-order corrections for some differences between the measured model and scaled airplane properties indicated that the airplane with the normal value of stabilizer pitching stiffness would still have an adequate margin of safety from flutter and that the flutter safety margin for the airplane with the emergency value of stabilizer pitching stiffness would be changed from inadequate to adequate. However, the validity of the corrections is questionable.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-242 , L-648
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 to determine the effects of forebody deflection on the stability and control characteristics of a canard airplane configuration. The configuration had a high trapezoidal aspect-ratio-3 wing, a trapezoidal canard surface, and a single swept vertical tail. Forebody deflection angles of 0 deg, 2 deg and deg were investigated. The results indicated that nose-up deflections of the forebody provided positive increments of pitching moment with little increase in drag and hence would be useful in reducing the pitch-control requirements and the attendant losses in lift-drag ratio due to trimming. Deflection of the forebody, however, aggravated the decrease in directional stability with increasing angle of attack by causing a loss in tail contribution and by increasing the instability of the wing-body combination.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-4-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-08-15
    Description: A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-1-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-08-15
    Description: An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-11-4-58L , L-120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...