ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power  (19)
  • 1955-1959  (19)
  • 1958  (6)
  • 1957  (5)
  • 1956  (8)
  • 1
    Publication Date: 2019-08-16
    Description: A lightweight turbine rotor assembly was devised, and components were evaluated in a full-scale jet engine. Thin sheet-metal airfoils were brazed to radial fingers that were an integral part of a number of thin disks composing the turbine rotor. Passages were provided between the disks and in the blades for air cooling. The computed weight of the assembly was 50 percent less than that of a similar turbine of normal construction used in a conventional turbojet engine. Two configurations of sheet-metal test blades simulating the manner of attachment were fabricated and tested in a turbojet engine at rated speed and temperature. After 8-1/2 hours of operation pieces broke loose from the tip sections of the better blades. Severe cracking produced by vibration was determined as the cause of failure. Several methods of overcoming the vibration problem are suggested.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-10-5-58E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram-jet combustor-inlet velocities range from 150 to 400 feet per second. These high linear velocities combined with the relatively low pressure ratios obtainable in ram jets require that the pressure drop through the combustor be kept low to avoid excessive losses in cycle efficiency. It has been estimated that, for a long-range ram-jet engine, an increase in pressure loss of one dynamic head would require a compensating 1-percent increase in combustion efficiency. Therefore, combustor pressure-loss coefficients (pressure drop/impact pressure) of the order of 1 to 4 are found in most current engines. The operating conditions described impose major problems in the design of stable and efficient ram-jet combustion systems. This chapter presents a survey of ram-jet combustor research and, where possible, points out criteria that may be useful in the design of ram-jet combustion systems.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The performance and operational characteristics of two afterburner configurations for the Iroquois turbojet engine were evaluated in an altitude test chamber over a range of afterburner equivalence ratios at afterburner-inlet pressures from 733 to 3186 pounds per square foot absolute. These conditions correspond to an altitude range from 38,700 to 66,800 feet at a flight Mach number of 1.5. The only difference between the two afterburner configurations was in the pattern of afterburner fuel injection. At an afterburner-inlet pressure of approximately 3100 pounds per square foot absolute, corresponding to an altitude of 38,700 feet and a_ flight Mach number of 1.5, the combustion efficiency of both configurations reached peak values of 0.80 to 0.85 at equivalence ratios of 0.35 to 0.40. However, further reduction in the afterburner-inlet pressure severely affected combustion efficiency. For example, at an afterburner inlet pressure level of 700 to 1000 pounds per square foot absolute, the efficiency for both configurations was 0.20 to 0.40.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE58G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The performance characteristics of the 19B-8 and 19XB-1 turbojet engines and the windmilling-drag characteristics of the 19B-6 engine were determined in the Cleveland altitude wind tunnel. The investigations were conducted on the 19B-8 engine at simulated altitudes from 5000 to 25,000 feet with various free-stream ram-pressure ratios and on the 19XB--1 engine at simulated altitudes from 5000 to 30,000 feet with approximately static free-stream conditions. Data for these two engines are presented to show the effect of altitude, free-stream ram-pressure ratio, and tail-pipe-nozzle area on engine performance. A 21-percent reduction in tail-pipe-nozzle area of the 19B-8 engine increased the let thrust 43 percent the net thrust 72 percent, and the fuel consumption 64 percent. An increase in free-stream ram-pressure ratio raised the jet thrust and the air flow and lowered the net thrust throughout the entire range of engine speeds for the 19B-8 engine. At similar operating conditions, the corrected jet thrust and corrected air flow were approximately the same for both engines, and the corrected specific fuel consumption based on jet thrust was lower for the 19XB-1 engine than for the 19B-8 engine. The thrust and air-flow data obtained with both engines at various altitudes for a given free-stream rampressure ratio were generalized to standard sea-level atmospheric conditions. The performance parameters involving fuel consumption generalized only at high engine speeds at simulated altitudes as high as 15,000 feet. The windmilling drag of the 19B-8 engine increased rapidly as the airspeed was increased.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7C13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Good internal performance over a wide range of flight conditions can be obtained with either a plug nozzle or a variable ejector nozzle that can provide a divergent shroud at high pressure ratios. For both the ejector and the plug nozzle, external flow can sometimes cause serious drag losses and, for some plug-nozzle installations, external flow can cause serious internal performance losses. Plug-nozzle cooling and design of the secondary-air-flow systems for ejectors were also considered .
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E56A18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: A program was conducted in an altitude facility at the NACA Lewis laboratory to investigate the effects of rapid inlet pressure oscillations on the operation of a current turbo jet engine. These pressure oscillations were approximately sinusoidal in form and were generated to cover a frequency range of 2 to 75 cycles per second and an amplitude range of 10 to 70 percent of the free-stream total pressure. As the oscillation progressed through the compressor, the amplitude was attenuated considerably and a relatively large phase shift (lag) occurred. Engine stall limits obtained during pressure oscillations differed from quasi-steady-state stall limits as defined by over-all compressor pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E58A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: The multistage turbine from the J73 turbojet engine has previously been investigated with standard and with reduced-chord rotor blading in order to determine the individual performance characteristics of each configuration over a range of over-all pressure ratio and speed. Because both turbine configurations exhibited peak efficiencies of over 90 percent, and because both units had relatively wide efficient operating ranges, it was considered of interest to determine the performance of the first stage of the turbine as a separate component. Accordingly, the standard-bladed multistage turbine was modified by removing the second-stage rotor disk and stator and altering the flow passage so that the first stage of the unit could be operated independently. The modified single-stage turbine was then operated over a range of stage pressure ratio and speed. The single-stage turbine operated at a peak brake internal efficiency of over 90 percent at an over-all stage pressure ratio of 1.4 and at 90 percent of design equivalent speed. Furthermore, the unit operated at high efficiencies over a relatively wide operating range. When the single-stage results were compared with the multistage results at the design operating point, it was found that the first stage produced approximately half the total multistage-turbine work output.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E53L28A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in a representative nonafterburning position. Jet-thrust and air-handling data were obtained in quiescent air for 11 selected ejector configurations over a wide range of operation. Additional data, at specific operating conditions, were obtained which indicate the ejector diameter ratio for peak jet-thrust performance. The experimental ejector data are presented in both graphical and tabulated form.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E56E23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in two representative after-burning positions. Jet-thrust and air-handling data were obtained in quiescent air for 4 selected ejector configurations over a wide range of secondary to primary airflow ratios and primary-nozzle pressure ratios. The experimental ejector data are presented in both graphical and tabulated form.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57F25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57F13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...