ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • University of Chicago Press
  • 2015-2019  (759)
  • 1950-1954  (1,332)
  • 1945-1949  (1,144)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago Press, 2019. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Messerli, M. A., Raihan, M. J., Kobylkevich, B. M., Benson, A. C., Bruening, K. S., Shribak, M., Rosenthal, J. J. C., & Sohn, J. J. Construction and composition of the squid pen from Doryteuthis pealeii. Biological Bulletin. 237(1), (2019): 1-15, doi:10.1086/704209.
    Description: The pen, or gladius, of the squid is an internalized shell. It serves as a site of attachment for important muscle groups and as a protective barrier for the visceral organs. The pen’s durability and flexibility are derived from its unique composition of chitin and protein. We report the characterization of the structure, development, and composition of pens from Doryteuthis pealeii. The nanofibrils of the polysaccharide β-chitin are arranged in an aligned configuration in only specific regions of the pen. Chitin is secreted early in development, enabling us to characterize the changes in pen morphology prior to hatching. The chitin and proteins are assembled in the shell sac surrounded by fluid that has a significantly different ionic composition from squid plasma. Two groups of proteins are associated with the pen: those on its surface and those embedded within the pen. Only 20 proteins are identified as embedded within the pen. Embedded proteins are classified into six groups, including chitin associated, protease, protease inhibitors, intracellular, extracellular matrix, and those that are unknown. The pen proteins share many conserved domains with proteins from other chitinous structures. We conclude that the pen is one of the least complex, load-bearing, chitin-rich structures currently known and is amenable to further studies to elucidate natural construction mechanisms using chitin and protein.
    Description: We thank John Dowling for financial support. We thank Kasia Hammar and Louie Kerr of the Marine Biological Laboratory Central Microscopy Facility for help obtaining scanning electron micrographs. We thank Bogdan Budnik and Renee Robinson from the Mass Spectrometry and Proteomics Resource Laboratory for their help and advice with protein identification. We thank Shin-Yi Marzano and Chenchen Feng of South Dakota State University for help with rapid amplification of cDNA ends. Funding for this work was provided by the Eugene and Millicent Bell Fellowship Fund in Tissue Engineering (MAM), an Agriculture and Biological Sciences Undergraduate Research Award (KSB), National Institutes of Health grant R01 GM101701 (MS), National Science Foundation grant IOS1557748 (JJCR), and Israel-United States Binational Science Foundation 2013094 (JJCR). Literature Cited
    Description: 2020-07-08
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago Press , 2019. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Iles, D. T., Rockwell, R. F., & Koons, D. N. Shifting vital rate correlations alter predicted population responses to increasingly variable environments. American Naturalist, 193(3), (2019): E57-E64. , doi:10.1086/701043.
    Description: Time series of vital rates are often used to construct “environment-blind” stochastic population projections and calculate the elasticity of population growth to increased temporal variance in vital rates. Here, we show that the utility of this widely used demographic tool is greatly limited by shifts in vital rate correlations that occur as environmental drivers become increasingly variable. The direction and magnitude of these shifts are unpredictable without environmentally explicit models. Shifting vital rate correlations had the largest fitness effects on life histories with short to medium generation times, potentially hampering comparative analyses based on elasticities to vital rate variance for a wide range of species. Shifts in vital rate correlations are likely ubiquitous in increasingly variable environments, and further research should empirically evaluate the life histories for which detailed mechanistic relationships between vital rates and environmental drivers are required for making reliable predictions versus those for which summarized demographic data are sufficient.
    Description: D.T.I. received support from Ducks Unlimited Canada, the S. J. and Jesse E. Quinney Foundation, Utah State University, the Frank M. Chapman Memorial Fund, and California Waterfowl. D.N.K. is supported by a James C. Kennedy Endowed Chair of Wetland and Waterfowl Conservation. We thank the editors and anonymous reviewers whose insightful comments greatly improved our study.
    Description: 2020-01-07
    Keywords: covariation ; elasticity ; demography ; fitness ; life history ; stochasticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago Press, 2019. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Laubichler, M. D., Maienschein, J., & Renn, J. Computational history of knowledge: Challenges and opportunities. Isis, 110(3), (2019): 502-512, doi: 10.1086/705544.
    Description: So far, the twenty-first century has been defined by an ever-increasing availability of digital data and substantial advances in computational methods. Taken together, these developments have already affected all aspects of our lives, including the ways research in the sciences and the humanities is conducted. This computational turn is often viewed with unease. But as this essay argues, it also offers exciting new perspectives for the history of knowledge. Rather than fighting these trends, the essay suggests, by embracing new possibilities and actively participating in the development of new computational methodologies the history of knowledge can act as a bridge between the world of the humanities, with its tradition of close reading and detailed understanding of individual cases, and the world of big data and computational analysis. We can gain novel perspectives on the evolution of knowledge that are both detailed and broad.
    Description: 2020-09-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago, 2019. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 237(1), (2019): 48-62, doi:10.1086/704337.
    Description: Anthropogenic activities and climate change have resulted in an increase of hypoxic conditions in nearshore ecosystems worldwide. Depending on the persistence of a hypoxic event, the survival of aquatic animals can be compromised. Temperate fish exposed to hypoxia display a reduction in the probability of eliciting startle responses thought to be important for escape from predation. Here we examine the effect of hypoxia on the probability of eliciting fast-startle responses (fast-starts) of a tropical fish, the white grunt (Haemulon plumieri), and whether hypoxia has a prolonged impact on behavior once the fish are returned to normoxic conditions. White grunts collected from the San Juan Bay Estuary in Puerto Rico were exposed to an oxygen concentration of 2.5 mg L−1 (40% dissolved oxygen). We found a significant reduction in auditory-evoked fast-starts that lasted for at least 24 hours after fish were returned to normoxic conditions. Accessibility to the neuronal networks that underlie startle responses was an important motivator for this study. Mauthner cells are identifiable neurons found in most fish and amphibians, and these cells are known to initiate fast-starts in teleost fishes. The assumption that most of the short-latency responses in this study are Mauthner cell initiated provided the impetus to characterize the white grunt Mauthner cell. The identification of the cell provides a first step in understanding how low oxygen levels may impact a single cell and its circuit and the behavior it initiates.
    Description: Steve Treistman and the Institute of Neurobiology in Old San Juan, Puerto Rico, kindly hosted SJZ, and Dr. Cristina Velazquez and Dr. Hector Marrero provided essential assistance in the laboratory. We thank Kamran Khodakhah for reading an earlier version of this manuscript and Frank P. Elsen, Electrophysiology Application Scientist of Harvard Bioscience, for his kind help. We also thank undergraduate students at the University of Puerto Rico for their help in the collection and care of fish. This research was supported by Williams College, the Puerto Rico Center for Environmental Neuroscience, and a National Science Foundation Centers of Research Excellence in Science and Technology grant (HRD-1137725).
    Description: 2020-07-16
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    University of Chicago Press
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago Press, 2019. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Gibson, A., Laubichler, M. D., & Maienschein, J. Introduction. Isis, 110(3), (2019): 497-501, doi: 10.1086/705542.
    Description: Digital technologies have transformed both the historical record and the historical profession. This Focus section examines how computational methods have influenced, and will influence, the history of science. The essays discuss the new types of questions and narratives that computational methods enable and the need for better data management in the history and philosophy of science (HPS) community. They showcase various methodological approaches, including textual and network analyses, and they place the computational turn in historiographical and societal context. Rather than surrendering to either technophilia or technophobia, the essays articulate both the benefits and the drawbacks of computational HPS. They agree that the future of the field depends on the successful integration of technological developments, social practices, and infrastructural support and that historians of science must learn to embrace collaboration both within and beyond disciplinary boundaries.
    Description: 2020-09-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago, 2018. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Physiological and Biochemical Zoology 91 (2018):814–825, doi:10.1086/696877.
    Description: Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.
    Description: Funding was provided by the University of Connecticut’s Department of Ecology and Evolutionary Biology and El Muy Viejo.
    Description: 2019-01-30
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago Press, 2019. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Shaw, A. K., D'Aloia, C. C., & Buston, P. M. The evolution of marine larval dispersal kernels in spatially structured habitats: Analytical models, individual-based simulations, and comparisons with empirical estimates. American Naturalist, 193(3), (2019):424-435, doi:10.1086/701667.
    Description: Understanding the causes of larval dispersal is a major goal of marine ecology, yet most research focuses on proximate causes. Here we ask how ultimate, evolutionary causes affect dispersal. Building on Hamilton and May’s classic 1977 article “Dispersal in Stable Habitats,” we develop analytic and simulation models for the evolution of dispersal kernels in spatially structured habitats. First, we investigate dispersal in a world without edges and find that most offspring disperse as far as possible, opposite the pattern of empirical data. Adding edges to our model world leads to nearly all offspring dispersing short distances, again a mismatch with empirical data. Adding resource heterogeneity improves our results: most offspring disperse short distances with some dispersing longer distances. Finally, we simulate dispersal evolution in a real seascape in Belize and find that the simulated dispersal kernel and an empirical dispersal kernel from that seascape both have the same shape, with a high level of short-distance dispersal and a low level of long-distance dispersal. The novel contributions of this work are to provide a spatially explicit analytic extension of Hamilton and May’s 1977 work, to demonstrate that our spatially explicit simulations and analytic models provide equivalent results, and to use simulation approaches to investigate the evolution of dispersal kernel shape in spatially complex habitats. Our model could be modified in various ways to investigate dispersal evolution in other species and seascapes, providing new insights into patterns of marine larval dispersal.
    Description: We thank S. Levin, M. Neubert, S. Proulx, L. Sullivan, R. Warner, and several anonymous reviewers for helpful comments. This work was carried out in part using computing resources at the University of Minnesota Supercomputing Institute. The project was supported by a start-up award from the University of Minnesota to A.K.S. and a National Science Foundation award (OCE-1260424) to P.M.B. and colleagues; C.C.D. was supported by the Weston Howland Junior Postdoctoral Scholarship from the Woods Hole Oceanographic Institution.
    Description: 2020-01-17
    Keywords: biological oceanography ; dispersal kernel ; evolutionarily stable strategy ; larval dispersal ; marine ecology ; population connectivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago Press, 2019. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Van Wert, J. C., & Mensinger, A. F. Seasonal and daily patterns of the mating calls of the oyster toadfish, Opsanus tau. Biological Bulletin, 236(2), (2019):97-107, doi:10.1086/701754.
    Description: Acoustic communication is vital across many taxa for mating behavior, defense, and social interactions. Male oyster toadfish, Opsanus tau, produce courtship calls, or “boatwhistles,” characterized by an initial broadband segment (30–50 ms) and a longer tone-like second part (200–650 ms) during mating season. Male calls were monitored continuously with an in situ SoundTrap hydrophone that was deployed in Eel Pond, Woods Hole, Massachusetts, during the 2015 mating season. At least 10 vocalizing males were positively identified by their unique acoustic signatures. This resident population was tracked throughout the season, with several individuals tracked for extended periods of time (72 hours). Toadfish began calling in mid-May when water temperature reached 14.6 °C with these early-season “precursor” boatwhistles that were shorter in duration and contained less distinct tonal segments compared to calls later in the season. The resident toadfish stopped calling in mid-August, when water temperature was about 25.5 °C. The pulse repetition rate of the tonal part of the call was significantly related to ambient water temperature during both short-term (hourly) and long-term (weekly) monitoring. This was the first study to monitor individuals in the same population of oyster toadfish in situ continuously throughout the mating season.
    Description: We thank Emily Cardinal for help with data collection and initial hydrophone setup, the Marine Resources Center at Marine Biological Laboratory for dock space and resources, John Atkins for SoundTrap hydrophone support, and Beth Giuffrida for analysis support. Rosalyn Putland and Jenni Stanley are gratefully acknowledged for coding assistance. We also thank UCSBPSTAT for statistics guidance.We are also grateful to the three anonymous reviewers and the editor for their comments. This study was made possible by National Science Foundation grants IOS 1354745 and DBI 1359230.
    Description: 2020-02-08
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2018. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 235 (2018): 30-42, doi:10.1086/699219.
    Description: The diel vertical migration of zooplankton is a process during which individuals spend the night in surface waters and retreat to depth during the daytime, with substantial implications for carbon transport and the ecology of midwater ecosystems. The physiological consequences of this daily pattern have, however, been poorly studied beyond investigations of speed and the energetic cost of swimming. Many other processes are likely influenced, such as fuel use, energetic trade-offs, underlying diel (circadian) rhythms, and antioxidant responses. Using a new reference transcriptome, proteomic analyses were applied to compare the physiological state of a migratory copepod, Pleuromamma xiphias, immediately after arriving to the surface at night and six hours later. Oxygen consumption was monitored semi-continuously to explore underlying cyclical patterns in metabolic rate under dark-dark conditions. The proteomic analysis suggests a distinct shift in physiology that reflects migratory exertion and changes in metabolism. These proteomic analyses are supported by the respiration experiments, which show an underlying cycle in metabolic rate, with a peak at dawn. This project generates molecular tools (transcriptome and proteome) that will allow for more detailed understanding of the underlying physiological processes that influence and are influenced by diel vertical migration. Further, these studies suggest that P. xiphias is a tractable model for continuing investigations of circadian and diel vertical migration influences on plankton physiology. Previous studies did not account for this cyclic pattern of respiration and may therefore have unrepresented respiratory carbon fluxes from copepods by about 24%.
    Description: Funding for ET-S was provided by a Training Grant from the National Institutes of Health (T32 HG00035), and proteomics work was supported in part by the University of Washington’s Proteomics Resource (UWPR95794). Funding was provided by Simon’s Foundation International as part of the BIOSSCOPE project.
    Description: 2019-08-16
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago Press, 2015. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in American Naturalist 186 (2015): 362-375, doi:10.1086/682276.
    Description: Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of λ, an R0-like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R0. The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population’s spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford.
    Description: Support for this work was provided, in part, by a postdoctoral fellowship (A.W.B.), Discovery Grants (M.K., M.A.L.), and an Accelerator Grant (M.A.L.) from the Natural Sciences and Engineering Research Council of Canada. The material is based on work supported by the US National Science Foundation under grants DEB-1145017 and DEB-1257545 to M.G.N. M.A.L. also received support from the Canada Research Chair program and a Killam Research Fellowship.
    Description: 2016-08-06
    Keywords: Generational spreading speed ; Stage structure ; Invasion speed ; Integrodifference models ; Recolonization ; Net reproductive number ; Graph reduction ; Next-generation operator
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...