ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • 2015-2019  (44)
  • 1995-1999
  • 1950-1954  (4,008)
  • 2018  (44)
  • 1954  (4,008)
Collection
Years
  • 2015-2019  (44)
  • 1995-1999
  • 1950-1954  (4,008)
Year
  • 1
    Publication Date: 2018-09-20
    Description: Understanding how the Antarctic ice sheet will respond to global warming relies on knowledge of how it has behaved in the past. The use of numerical models, the only means to quantitatively predict the future, is hindered by limitations to topographic data both now and in the past, and in knowledge of how subsurface oceanic, glaciological and hydrological processes interact. Incorporating the variety and interplay of such processes, operating at multiple spatio-temporal scales, is critical to modeling the Antarctic’s system evolution and requires direct observations in challenging locations. As these processes do not observe disciplinary boundaries neither should our future research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Nature Communication, Nature Publishing Group, 9(3178), ISSN: 2041-1723
    Publication Date: 2019-02-13
    Description: Natural dissolved organic matter (DOM) comprises a broad range of dissolved organic molecules in aquatic systems and is among the most complex molecular mixtures known. Here we show, by comparing detailed structural fingerprints of individual molecular formulae in DOM from a set of four marine and one freshwater environments, that a major component of DOM is molecularly indistinguishable in these diverse samples. Molecular conformity was not only apparent by the co-occurrence of thousands of identical molecular formulae, but also by identical structural features of those isomers that collectively represent a molecular formula. The presence of a large pool of compounds with identical structural features in DOM is likely the result of a cascade of degradation processes or common synthetic pathways that ultimately lead to the formation of a universal background, regardless of origin and history of the organic material. This novel insight impacts our understanding of long-term turnover of DOM as the underlying mechanisms are possibly universal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Nature Protocols, Nature Publishing Group, 13(6), pp. 1310-1330, ISSN: 1754-2189
    Publication Date: 2020-02-23
    Description: Traditionally, the description of microorganisms starts with their isolation from an environmental sample. Many environmentally relevant anaerobic microorganisms grow very slowly, and often they rely on syntrophic interactions with other microorganisms. This impedes their isolation and characterization by classic microbiological techniques. We developed and applied an approach for the successive enrichment of syntrophic hydrocarbon-degrading microorganisms from environmental samples. We collected samples from microbial mat-covered hydrothermally heated hydrocarbon-rich sediments of the Guaymas Basin and mixed them with synthetic mineral medium to obtain sediment slurries. Supplementation with defined substrates (i.e., methane or butane), incubation at specific temperatures, and a regular maintenance procedure that included the measurement of metabolic products and stepwise dilutions enabled us to establish highly active, virtually sediment-free enrichment cultures of actively hydrocarbon-degrading communities in a 6-months to several-years' effort. Using methane as sole electron donor shifted the originally highly diverse microbial communities toward defined mixed cultures dominated by syntrophic consortia consisting of anaerobic methane-oxidizing archaea (ANME) and different sulfate-reducing bacteria. Cultivation with butane at 50 °C yielded consortia of archaea belonging to Candidatus Syntrophoarchaeum and Candidatus Desulfofervidus auxilii partner bacteria. This protocol also describes sampling for further molecular characterization of enrichment cultures by fluorescence in situ hybridization (FISH), and transcriptomics and metabolite analyses, which can provide insights into the functioning of hydrocarbon metabolism in archaea and resolve important mechanisms that enable electron transfer to their sulfate-reducing partner bacteria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: The construction of high capacity data sharing networks to support increasing government and commercial data exchange has highlighted a key roadblock: the content of existing Internet-connected information remains siloed due to a multiplicity of local languages and data dictionaries. This lack of a digital lingua franca is obvious in the domain of human food as materials travel from their wild or farm origin, through processing and distribution chains, to consumers. Well defined, hierarchical vocabulary, connected with logical relationships—in other words, an ontology—is urgently needed to help tackle data harmonization problems that span the domains of food security, safety, quality, production, distribution, and consumer health and convenience. FoodOn (http://foodon.org) is a consortium-driven project to build a comprehensive and easily accessible global farm-to-fork ontology about food, that accurately and consistently describes foods commonly known in cultures from around the world. FoodOn addresses food product terminology gaps and supports food traceability. Focusing on human and domesticated animal food description, FoodOn contains animal and plant food sources, food categories and products, and other facets like preservation processes, contact surfaces, and packaging. Much of FoodOn’s vocabulary comes from transforming LanguaL, a mature and popular food indexing thesaurus, into a World Wide Web Consortium (W3C) OWL Web Ontology Language-formatted vocabulary that provides system interoperability, quality control, and software-driven intelligence. FoodOn compliments other technologies facilitating food traceability, which is becoming critical in this age of increasing globalization of food networks.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 1287, doi:10.1038/s41467-018-03468-6.
    Description: Warm subtropical-origin Atlantic water flows northward across the Greenland-Scotland Ridge into the Nordic Seas, where it relinquishes heat to the atmosphere and gradually transforms into dense Atlantic-origin water. Returning southward along east Greenland, this water mass is situated beneath a layer of cold, fresh surface water and sea ice. Here we show, using measurements from autonomous ocean gliders, that the Atlantic-origin water was re-ventilated while transiting the western Iceland Sea during winter. This re-ventilation is a recent phenomenon made possible by the retreat of the ice edge toward Greenland. The fresh surface layer that characterises this region in summer is diverted onto the Greenland shelf by enhanced onshore Ekman transport induced by stronger northerly winds in fall and winter. Severe heat loss from the ocean offshore of the ice edge subsequently triggers convection, which further transforms the Atlantic-origin water. This re-ventilation is a counterintuitive occurrence in a warming climate, and highlights the difficulties inherent in predicting the behaviour of the complex coupled climate system.
    Description: Support for this work was provided by the Norwegian Research Council under Grant agreement no. 231647 (L.H. and K.V.), the Bergen Research Foundation under Grant BFS2016REK01 (K.V.), and the Centre for Climate Dynamics at the Bjerknes Centre through the FRESHWATER project (K.V.). Additional funding was provided by the Swiss National Science Foundation grants P2EZP2162267 and P300P2174307 (L.P.), the National Science Foundation grant OCE-1558742 (M.A.S.), the Norway Fulbright Foundation (K.V.), the Canada Fulbright Foundation (G.W.K.M.), and the Natural Sciences and Engineering Research Council of Canada (G.W.K.M.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 4917, doi:10.1038/s41598-018-23167-y.
    Description: Intertidal inhabitants are exposed to the 24-hour solar day, and the 12.4 hour rising and falling of the tides. One or both of these cycles govern intertidal organisms’ behaviour and physiology, yet little is known about the molecular clockworks of tidal rhythmicity. Here, we show that the limpet Cellana rota exhibits robust tidally rhythmic behaviour and gene expression. We assembled a de-novo transcriptome, identifying novel tidal, along with known circadian clock genes. Surprisingly, most of the putative circadian clock genes, lack a typical rhythmicity. We identified numerous tidally rhythmic genes and pathways commonly associated with the circadian clock. We show that not only is the behaviour of an intertidal organism in tune with the tides, but so too are many of its genes and pathways. These findings highlight the plasticity of biological timekeeping in nature, strengthening the growing notion that the role of ‘canonical’ circadian clock genes may be more fluid than previously thought, as exhibited in an organism which has evolved in an environment where tidal oscillations are the dominant driving force.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 8128, doi:10.1038/s41598-018-26484-4.
    Description: The kakapo is a critically endangered, herbivorous parrot endemic to New Zealand. The kakapo hindgut hosts a dense microbial community of low taxonomic diversity, typically dominated by Escherichia fergusonii, and has proven to be a remarkably stable ecosystem, displaying little variation in core membership over years of study. To elucidate mechanisms underlying this robustness, we performed 16S rRNA gene-based co-occurrence network analysis to identify potential interactions between E. fergusonii and the wider bacterial community. Genomic and metagenomic sequencing were employed to facilitate interpretation of potential interactions observed in the network. E. fergusonii maintained very few correlations with other members of the microbiota, and isolates possessed genes for the generation of energy from a wide range of carbohydrate sources, including plant fibres such as cellulose. We surmise that this dominant microorganism is abundant not due to ecological interaction with other members of the microbiota, but its ability to metabolise a wide range of nutrients in the gut. This research represents the first concerted effort to understand the functional roles of the kakapo microbiota, and leverages metagenomic data to contextualise co-occurrence patterns. By combining these two techniques we provide a means for studying the diversity-stability hypothesis in the context of bacterial ecosystems.
    Description: This work was supported by funding from the Department of Conservation (DOC) as well as a University of Auckland Faculty Research Development Fund grant (9841 3626187) to MWT, and a University of Auckland Doctoral Scholarship to DWW.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 7363, doi:10.1038/s41598-018-25565-8.
    Description: Satellite-tracking of mature white sharks (Carcharodon carcharias) has revealed open-ocean movements spanning months and covering tens of thousands of kilometers. But how are the energetic demands of these active apex predators met as they leave coastal areas with relatively high prey abundance to swim across the open ocean through waters often characterized as biological deserts? Here we investigate mesoscale oceanographic variability encountered by two white sharks as they moved through the Gulf Stream region and Sargasso Sea in the North Atlantic Ocean. In the vicinity of the Gulf Stream, the two mature female white sharks exhibited extensive use of the interiors of clockwise-rotating anticyclonic eddies, characterized by positive (warm) temperature anomalies. One tagged white shark was also equipped with an archival tag that indicated this individual made frequent dives to nearly 1,000 m in anticyclones, where it was presumably foraging on mesopelagic prey. We propose that warm temperature anomalies in anticyclones make prey more accessible and energetically profitable to adult white sharks in the Gulf Stream region by reducing the physiological costs of thermoregulation in cold water. The results presented here provide valuable new insight into open ocean habitat use by mature, female white sharks that may be applicable to other large pelagic predators.
    Description: This work was supported by the WHOI Ocean Life Institute and awards from NASA and NSF.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 2398, doi:10.1038/s41467-018-04809-1.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 10610, doi:10.1038/s41598-018-28871-3.
    Description: Foraminifera in sediments exposed to gas-hydrate dissociation are not expected to have cellular adaptations that facilitate inhabitation of chemosynthesis-based ecosystems because, to date, there are no known endemic seep foraminifera. To establish if foraminifera inhabit sediments impacted by gas-hydrate dissociation, we examined the cellular ultrastructure of Melonis barleeanus (Williamson, 1858) from the Vestnesa gas hydrate province (Arctic Ocean, west of Svalbard at ~79 °N; ~1200-m depth; n = 4). From sediments with gas hydrate indicators, living M. barleeanus had unusual pore plugs composed of a thick, fibrous meshwork; mitochondria were concentrated at the cell periphery, under pore plugs. While there was no evidence of endosymbioses with prokaryotes, most M. barleeanus specimens were associated with what appear to be Type I methanotrophic bacteria. One foraminifer had a particularly large bolus of these microbes concentrated near its aperture. This is the first documented instance of bona fide living M. barleeanus in gas-hydrate sediments and first documentation of a foraminifer living in close association with putative methanotrophs. Our observations have implications to paleoclimate records utilizing this foundational foraminiferal species.
    Description: JMB was funded by a WHOI Independent Study Award (Mellon Grant), with partial support from NSF grant OCE-1634469. GP and CAGE 15-2 cruise were supported by the Research Council of Norway through CAGE Center for Excellence in Arctic Gas Hydrate Environment and Climate project 223259 and NORCRUST (project number 255150).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...